Code: 23CE3303

II B.Tech - I Semester – Supplementary Examinations - MAY 2025

FLUID MECHANICS (CIVIL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

PART – A

1.a)	Name the main branches of fluid mechanics.
1.b)	Write the relationships for density, specific weight.
1.c)	What is fluid pressure at a point?
1.d)	Define Pascal's Law.
1.e)	Define Fluid Kinematics.
1.f)	Compare laminar and turbulent flows.
1.g)	Distinguish between an orifice meter and orifice.
1.h)	Define continuity and Bernoulli's equation.
1.i)	Define Darcy's equation.
1.j)	What are minor losses in pipes and give examples?

PART - B

					Max.
					Marks
	UNIT-I				
2	a)	Define density, specific weight, and specific	ic gra	vity,	5 M
		and explain their interrelationships.			

b) Explain the thermodynamic properties of fluid. OR 3 a) Find density, specific weight of 1 liter weight petrol of specific gravity 0.7. b) Differentiate between kinematic and dynam viscosity and explain their significance in flumechanics. UNIT-II 4 a) Explain an expression for total pressure and cen	nic 5 M			
 a) Find density, specific weight of 1 liter weight petrol of specific gravity 0.7. b) Differentiate between kinematic and dynam viscosity and explain their significance in flumechanics. UNIT-II 4 a) Explain an expression for total pressure and cen 	nic 5 M			
petrol of specific gravity 0.7. b) Differentiate between kinematic and dynam viscosity and explain their significance in flumechanics. UNIT-II 4 a) Explain an expression for total pressure and cen	nic 5 M			
b) Differentiate between kinematic and dynam viscosity and explain their significance in flumechanics. UNIT-II 4 a) Explain an expression for total pressure and cen	id			
viscosity and explain their significance in flumechanics. UNIT-II 4 a) Explain an expression for total pressure and cen	id			
mechanics. UNIT-II 4 a) Explain an expression for total pressure and cen				
UNIT-II 4 a) Explain an expression for total pressure and cen	re 5 M			
4 a) Explain an expression for total pressure and cen	re 5 M			
4 a) Explain an expression for total pressure and cen	re 5 M			
	J 1V1			
of prossure for a vertically immerced surface				
of pressure for a vertically immersed surface.	: 5 1 7			
b) Find the pressure in pipe if the area of reservoir				
100 times the area of the tube for manometer readi				
shown in Figure. The specific gravity of mercury				
13.6 for a single column manometer is connected	to			
a pipe containing a liquid of specific gravity. 0.9	as			
shown in fig.				
20 cm				
OR				
5 a) Demonstrate the pressure intensity in the liquids	is 5 M			
directly proportional to the height of a point from	m			
free surface liquid.				

	b)	Find the pressure of air in the tank in pascles for a	5 M
		closed tank is filled with water upto 50 cm then by	
		an oil of height 100 cm whose specific gravity is 0.8	
		and above that air is filled. This tank is connected to	
		the mercury manometer and difference in its heights	
		is recorded as 15 cm. The lower level of mercury is	
		10 cm below the tank level.	
		UNIT-III	
6	a)	Explain steady & unsteady flow, uniform & Non-	5 M
		uniform flow with neat sketches.	
	b)	Explain the stream function and velocity potential	5 M
		function with examples.	
	l	OR	
7	a)	Define one, two & three dimensional flows.	5 M
	b)	Explain the equation of continuity and obtain an	5 M
		expression for continuity equation for a	
		3 dimensional flow in Cartesian coordinates.	
		UNIT-IV	
8	a)	What is Euler's equation? Explain how to obtain the	5 M
		Bernoulli's equation from it.	
	b)	A pipe of diameter 400mm carries water at a	5 M
		velocity of 25m/s. The pressures at a point are given	
		as 29.43 N/cm ² and 22.563 N/cm ² while the datum	
		head at A and B are 28m and 30m. Find the loss of	
		head between A and B.	
		OR	
9	a)	Explain the principle of venturimeter with a neat	5 M
		sketch. Derive the expression for rate of flow of	
		fluid through it.	

	b)	An orifice meter with orifice diameter 10cm is	5 M			
inserted in a pipe of 20cm diameter. The pressure						
gauges fitted upstream and downstream of the						
orifice gives readings of 19.62 N/cm ² and 9.81						
	N/cm ² . Coefficient of discharge for orifice meter is					
		0.6. Find the discharge of water through pipe.				
	UNIT-V					
10	a)	Develop the equation for head loss in pipes due to	5 M			
	friction Darcy-Weisbach equation.					
	b)	Explain the variation of friction factor with	5 M			
		Reynolds's number.				
OR						
11	11 a) Explain the concept of pipes in parallel and series.		5 M			
	b) Explain hydraulic grade line and total energy line.		5 M			
Discuss its practical significance in analysis of fluid						
flow problems.						