Code: 23CE3302

II B.Tech - I Semester – Supplementary Examinations - MAY 2025

STRENGTH OF MATERIALS (CIVIL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

PART - A

1.a)	Define Poisson's ratio? Provide its significance.		
1.b)	Define composite bars and their importance in engineering		
	applications.		
1.c)	What is a simply supported beam? Provide an example.		
1.d)	Explain the difference between a cantilever beam and an		
	overhanging beam.		
1.e)	Explain the concept of section modulus and its		
	significance in beam design.		
1.f)	Define torsion and mention its application in circular		
	shafts.		
1.g)	State the moment area method for calculating the		
	deflection of beams.		
1.h)	Explain the significance of the elastic curve in beam		
	deflection analysis.		
1.i)	Define the term "equivalent length" in column buckling.		
1.j)	State the formula for 'hoop stress' in a thin cylindrical		
	shell.		

PART - B

					Max.		
					Marks		
	UNIT-I						
2		plain the types of stresses and strains wit	h sui	table	10 M		
diagrams and examples.							
	OR						
3	Describe the behavior of composite bars under axial			10 M			
	loading and how stresses are distributed among different						
	materials.						
	UNIT-II						
4	_	plain in detail the S.F. and B.M. diagra			10 M		
	can	tilever beam subjected to uniformly distrib	uted 1	loads			
	(UI	DL) and point load.					
		OR					
5	An	overhanging beam has a span of 8m w	ith a	a 2m	10 M		
	overhang on the right side. The beam carries a uniformly						
	distributed load of 4 kN/m over the entire span and a						
	poir	nt load of 10 kN at the free end of the	overl	nang.			
	Det	ermine the reactions at the supports and dra	w the	S.F.			
	and	B.M. diagrams.					
	UNIT-III						
6	A b	eam with a rectangular cross-section 150	mm	wide	10 M		
	and	400 mm deep carries a shear force of 30	0 kN	at a			
	cert	ain section. Derive the formula for she	ear s	stress			
	dist	ribution across the depth of the section and	sketc	h the			
	shea	ar stress distribution diagram.					

	OR					
7	A steel shaft of diameter 100 mm is subjected to a	10 M				
	bending moment of 30 kNm and a torque of 20 kNm.					
	Determine the maximum shear stress and the maximum					
bending stress in the shaft.						
	UNIT-IV					
8	A cantilever beam of length 'L' is subjected to a	10 M				
	uniformly distributed load 'w' over its entire span. Using					
	Macaulay's method, determine the slope and deflection at					
	the free end of the beam.					
	OR					
9	Determine the slope at ends and deflection at the center	10 M				
	of a simply supported beam of length 'L' subjected to a					
	uniformly distributed load 'w' over its entire span.					
UNIT-V						
10	Derive the Euler's critical load formula for a column with	10 M				
	one end fixed and the other end free.					
	OR					
11	A thick-walled cylinder with an internal pressure of	10 M				
	10 MPa has an internal radius of 50 mm and an external					
	radius of 100 mm. Using Lame's theory, determine the					
	maximum and minimum hoop stresses.					