v 40T 98eq

v jo v 28eq

10D

1

‘[Te3op ur SurdourSuo
9810491 21eMm1JOs Jo 1doouoo oy uredxyg

(q

N S

10D

[l |

(JuBUdUIBUI
pue juswdoppadp aremyos oddns
01 j0eIUl A3y} Op MOY pue sjusuodwod
Aoy oy} a1 JeyA\ JUSTIUOIIAUD
HSYD ® JO QInjodIyore oy} aquosa(]

4!

g ()

{,SNaI

10D | TT |oremyos ul uonedyisse[d juouodwiod st jeym | (M1
(UuaWdO[aAID 2IBMIJOS UT S[00]

10D | TT |9SVD 3uisn jo sigouaq 1ofew omy are jeypm | (']
© "Burse) 91eM)JOS Ul

[OD | TT |UuOlEpI[eA PUB UOTJROLJLIIA UIIMIAq 9IeNUAIdTI | (U'T
"TONRIUSWINIOP JIBMIJOS [BUIDIXD

[0D| TT |pPUe [ewdjul USAMIRq QJUIIIP 9yl aurga(| (8°]
*90BJIOUI

10D | TT [I9sn pooT e jo sonsuajoeIRyd om) Aue ol | (1
"ugisop

[0D| TT |91emyos ur Jurdnodo pue uorsaqod suyaq| (2'1
(Iadeuew j0ofoxd

10D | TT |oremyos e Jo saniiqisuodsar Aoy oy are jeym | (p'1

do T'1 | (889901 Surrdsurduy Jo juawannbol ogs st jeym | (9°1
"SIB9A JU2091 urt saonoeid Juswdojoaap

[0D| TT |21emyos ur sagueyd 3[qeiou om) Isry| (q'1

10D | 71 SIS dremyog auygaq | (B]

0D | 14
V- I1dvd

SWOINQ 2SIN0T) — Q)

U [OBD WO 991070 [eWIAUI UB [iIm suonsanb Aesss ¢ surejuoo g-ued ‘¢

T SILLED uonsan() Yoy ‘suonssnb Jomsue HOYs ()] SUIBIUOD Y-Led 7

"SYIBWI () SOLLIED UONSING) Yoes

“SYIRA]

[2A97] swoofg — Tg
*20e]d U0 ur pazemsu aq Jsnur 1aded uonsany) jo sued v 'y

" PuUB y sped om) surejuod soded uonsanb snyy 1 :oj0N

0L “S3IRIN "Xe]N

(sa-dso)
ONTHHIANIONT HAVMLAOS

$In0Y ¢ uoneIn g

STOT HHIINIAON - suoheuimexy Ien3ay - 133s9Wdg | - Y2 L°d ITI

£ dAd

£06ESALT PpoD

W S

148)8)

v

(,SPIIIATIOR
dueuouIieW 10J panmnbor oy pue
1500 o3 Sunewnss ur djoy Sjepow 989}
Op MOH ‘s[opowr ss2201d adurUSIUTEW
9IBMIJOS JUSIDJJIP QY) U0 9jeIOqR[q

(q

N S

10D

1

"90URDIUSIS JI37} PUB S[00}
HSVD ® JO sonsudjoereyd oy urejdxyqg

0]

A-~LINO

N &

10D

Tl

"UOT)BJUDWINIOP
[eUIIXa pue [euIjuT u2aMIq
SuysmSunSIp ‘UOIIBIUOWNIOP DIBMIJOS
Jo oouepodwi pue ojo1 oy urerdxyg

(q

W§

10D

(4!

"SOLIOUI $59001d pue SoLow
jonpord USOMIOQ QOURIQPIP Y} pue
S[epowr Ayijenb a1BMIFOS SNOLIBA 9qLIOSA(]

p: (o)

PART -B

b)

Explain the Basic COCOMO Model. How
does it estimate effort and cost for
software projects? Support your answer
with examples.

L4

CO4

5M

UNIT-III

Compare and contrast the two primary
approaches to software design: Function-
Oriented Design and Object-Oriented
Design. Discuss their key characteristics,
advantages, and disadvantages

L4

CO4

SM

b)

Describe the Extreme Programming (XP)
process. What are the key practices that
differentiate XP from other agile
methodologies?

L2

CO1

5SM

OR

Explain the Scrum framework in detail.
Describe the roles, artifacts, involved in a
typical Scrum project.

L2

col

5M

b)

Discuss the characteristics of a Good User
Interface (UI). Why is a well-designed Ul
critical for the success of a software
application?

L3

CO3

5SM

UNIT-IV

Max.
o s Marks
UNIT-I
a) | What is the use of software development| L2 |{CO1| 5 M
process models? Explain.
b) |Compare and contrast the Iterative| L2 |[COl1| 5M
Waterfall Model and the Incremental
Development Model.
OR
a) |[Describe the types of software|L2|COl| 5M
development projects with suitable
examples.
b) |Illustrate the working of the Rapid|L2 [COl| 5M
Application Development (RAD) model.
What types of projects are most suited for
RAD, and why?
UNIT-II
a) |Write short note on Requirement|L2 |COl| 5M
Specification and Requirement
Validation.
b) |Compare and contrast Lines of Code|L4 |CO4| 5M
(LOC) and Function Point (FP) metrics
for project size estimation. In what
scenarios would you prefer one metric
over the other?
OR
a) |Requirements analysis is unquestionably| L3 |CO2| 5M

the most communication intensive step in
the software engineering process. Why the
communication path does frequently
breaks down?

Describe black-box testing techniques,
focusing on equivalence class partitioning
and boundary value analysis.

L2

COl

5M

Page 2 of 4

b)

What is the ISO 9000 certification? How
does ISO 9000 apply to the software
industry, and how does it compare with
the SEI Capability Maturity Model
(CMM)?

L3

CcOo3

5M

Page 3 0f4

-Code: 23DS3503 PVP 23

Il B.Tech. — I Sem- Regular Examinations
NOVEMBER 2025

SOFTWARE ENGINEERING
CSE (Data Science)

1.(CO1, L2,2M)

la) Software Crisis

Definition — 2M

1.b) Notable changes

Any two points — IM + 1M

1.¢) Requirement of Engineering Process
Purpose/need — 2M

1.d) Responsibilities of Project Manager
Any two responsibilities — 1M + 1M
1.e) Cohesion & Coupling

Cohesion definition — 1M

Coupling definition — 1M

1.f) Characteristics of good Ul

Any two points — 1M + 1M

1.g) Internal vs External Documentation
Internal documentation — 1M

External documentation — 1M

1.h) Verification vs Validation
Verification — 1M

Validation — 1M

1.1) Benefits of CASE Tools

Any two benefits — IM + IM

1.j) Component Classification

Definition/meaning — 2M

2(a) What is the use of software development process models? Explain. (L2, CO1, 5M)

Explanation — 3M
Any two uses / advantages — 2M

2(b) Compare and contrast the Iterative Waterfall Model and the Incremental Development
Model. (L2, CO1, 5M)

Code: 23DS3503 PVP 23

Explanation of both models - 3M
Any two differences - 2M

3(a) Describe the types of software development projects with suitable examples. (L2, CO1, 5M)

Explanation of project types — 3M
Any two examples — 2M

**3(b) Illustrate the working of the Rapid Application Development (RAD) model.

What types of projects are most suited for RAD, and why? (L2. CO1. 5M)
RAD model explanation — 3M
Suitable project types (any two reasons) — 2M

UNIT - 11
4(a) Write short notes on Requirement Specification and Requirement Validation. (L2, CO1, 5M)

Requirement Specification — 3M
Requirement Validation — 2M

**4(b) Compare and contrast Lines of Code (LOC) and Function Point (FP) metrics.

In what scenarios would you prefer one metric over the other?** (1.4, CO4, 5M)
LOC & FP explanation — 3M
Any two comparisons / preference reasons — 2M

5(a) Requirements analysis is unquestionably the most communication-intensive step in the
software engineering process. Why does the communication path frequently break down?
(L3, CO2,.5M)

Explanation —3M
Reasons -2M

**5b)Explain the Basic COCOMO Model. How does it estimate effort and cost for software
projects?Support your answer with examples.(I.4, CO4, SM)

Explanation —4M
Examples -1M

UNIT - IlI

6(a) Compare and contrast Function-Oriented Design and Object-Oriented Design. (L4, CO4,
5M)

Explanation of both approaches — 3M
Any two comparisons — 2M

*%6(b) Describe the Extreme Programming (XP) process. What are the key practices that
differentiate XP? From other agile methodologies? (L2, CO1. 5M)

' Code: 23DS3503
XP process explanation — 3M
Any two XP practices — 2M

7(a) Explain the Scrum framework in detail.Describe the roles, artifacts, and workflow involved
in a typical Scrum project. (L2, CO1, SM)

Scrum framework explanation — 3M

Any two (roles / artifacts / workflow) — 2M

*#7(b) Discuss the characteristics of a Good User Interface (UI).Why is a well-designed Ul
important? (L3, CO3, 5M)

Any three characteristics — 4M

Why-1M

UNIT -1V

8(a) Describe black-box testing techniques: equivalence class partitioning and boundary value
analysis. (L2, CO1, 5M)

Equivalence Class Partitioning — 3M

Boundary Value Analysis - 2M

**8(b) What is ISO 9000 certification? How does ISO 9000 apply to software industry,and how
does it compare with the SEI CMM. ? (L3, CO3, 5M)

ISO 9000 explanation — 2M

Any two ISO vs CMM differences — 3M

9(a) Describe various software quality models.Differentiate between product metrics and process
metrics. . (L2, CO1, 5M)

Software quality models explanation — 3M

Any two product vs process metric differences — 2M

**0(b) Explain the role and importance of software documentation.Distinguish between internal
and external documentation. . (L2, CO1, SM)

Documentation role explanation — 3M

Internal vs external docs (any two points) — 2M

UNIT -V

10(a) Explain the characteristics of CASE tools and their significance. (L2, CO1, SM)
Any three characteristics — 3M

Any two significance points — 2M

**10(b) Elaborate on software maintenance process models.How do these models help estimate
cost and effort? (1.4, CO4, 5M)

Maintenance model explanation — 3M

Cost/effort estimation (any two points) — 2M

Code: 23DS3503
11a)Describe the architecture of a CASE environment.What are the key components and

how do they interact to support software development and maintenance?
(L2, CO1, 5M)

Architecture explanation — 3M
Components — 2M

**11(b) Explain the concept of software reverse engineering in detail. (L2, CO1, SM)

Reverse engineering explanation — 5SM

PART-A

1.a) Define Software Crisis.
The software crisis refers to the difficulties faced in the 1960s—70s when projects were often over
budget, late,unreliable, and hard to maintain due to lack of proper methods and tools.

1.b) List two notable changes in software development practices in recent years.

Shift from Waterfall to Agile methodologies.

Error Handling: Prevention vs Correction

Coding is Not Everything

Requirement specification is crucial and prioritized
Design Phase is Important

Regular Reviews

Systematic Testing

Better Documentation

. Proper Project Planning

10. Use of Metrics

11. Adoption of DevOps and Continuous Integration/Deployment (CI/CD).

1.
2
3.
4.
5
6.
e
8.
9

1.c) What is the requirement of Engineering Process?

The engineering process is required to ensure systematic, disciplined, and measurable
development, producing high-quality software that meets customer needs within time and budget.

1.d) What are the key responsibilities of a software project manager?

Preparing and monitoring the project schedule.
Managing risks and ensuring project quality.

Planning and scheduling the project

Resource allocation, monitoring, and risk management
Ensuring quality and timely delivery

1.e) Define cohesion and coupling in software design.

e Cohesion: The degree to which the elements of a module belong together. High cohesion
is desirable.
e Coupling: The degree of interdependence between modules. Low coupling is desirable.

Code: 23DS3503
1.f) State any two characteristics of a good user interface.

1. Simplicity and ease of use
2. Consistency in layout and functionality

1.g) Define the difference between internal and external software documentation.

Internal Documentation: Comments, meaningful variable names, and code structure

embedded within the source code.
External Documentation: User manuals, design documents, test plans, and requirement

specifications maintained outside the code.

1.h) Differentiate between verification and validation in software testing.
Verification: “Are we building the product right?” — checks correctness of process
(reviews, inspections).

Validation: “Are we building the right product?” — checks correctness of final product
(testing, user evaluation).

1.i) What are two major benefits of using CASE tools in software development?

1. Improves productivity and reduces development time
2. Enhances documentation accuracy and design consistency

1.j) What is component classification in software reuse?

Component classification is the process of categorizing reusable software components (e.g., by
function, domain, or usage) to make them easy to identify, retrieve, and reuse in new projects.

PART B

2(a) What is the use of software development process models? Explain. (L2, CO1, 5M)

Explanation — 3M
Any two uses / advantages — 2M

A software development process model provides a structured sequence of activities required to

develop software.
It acts as a framework that guides planning, organizing, executing, and controlling software

projects.
Process models help define how tasks are carried out, in what order, who performs them, and how

the progress is evaluated.
They ensure that development happens in a systematic, disciplined, and predictable way rather

than in an ad-hoc manner.

1. Improves project planning and control

Code: 23DS3503
o Models provide clear stages. helping managers monitor progress and allocate
resources effectively.
2. Reduces risks and development errors
o Early identification of issues through structured phases leads to fewer defects and
lower project failure rates.

2(b) Compare and contrast the Iterative Waterfall Model and the Incremental Development
Model. (L2, CO1, 5M)

Explanation of both models — 3M
Any two differences — 2M

Iterative Waterfall Model:
The Iterative Waterfall Model is an improved version of the Classical Waterfall Model.

It allows going back to earlier phases to fix mistakes — which was not possible in the classical
version

Incremental Development Model

Software is developed in parts (increments), not all at once.
Each increment adds new features or modules to the system.
After every increment, the software becomes more functional.

Differences:
1 Delivery of software:

o [terative Waterfall: Complete system is delivered at the end.
o [ncremental Model: System is delivered in parts (increments).

[1 Customer feedback:

e lterative Waterfall: Feedback occurs after completing phases.
e Incremental Model: Continuous feedback after each increment.

3(a) Describe the types of software development projects with suitable examples. (L2, CO1, 5M)

Explanation of project types — 3M
Any two examples — 2M

Software development projects generally fall into two broad categories:
1. Software Product Development:

® Generic Products: Designed for a broad, heterogeneous market aiming to satisfy common
needs across many customers.

Examples include Microsoft Windos OS and Oracle Database.

These products require extensive upfront requirements analysis,substantial investment, and must
support numerous configurations.

* Code: 23DS3503

e Domain-Specific Products: Target specific industries or sectors with specialized functionalities.
Examples include BANCS(banking software by TCS) and FINACLE (banking product
byInfosys). These products emphasize domain expertise and adaptability within their vertical
markets.

2. Software Service Projects:

e These projects focus on creating customized software to fulfill specific client requirements,
adapting existing software or developing new features. They cover maintenance, enhancement,
testing, consulting, or full project outsourcing.

e Examples include custom ERP solutions for enterprises, payroll software for educational
institutions, or outsourced module development for telecom services.

*#3(b) Illustrate the working of the Rapid Application Development (RAD) model. What types of
projects are most suited for RAD, and why? (L2, CO1, 5M)

RAD model explanation — 3M

Suitable project types (ANY TWO) - 2M

RAD combines the features of: Prototyping Model (developing a working model quickly),and
Evolutionary Model (incrementally improving the softwarewith feedback).

working of the Rapid Application Development (RAD)

Development is done in short cycles (called iterations or time-boxes).

In each cycle, a small prototype of a specific feature is built quickly.

The customer reviews this prototype and gives feedback.

The prototype is then refined and improved.

The process repeats for the next feature.

The final software is built step by step, based on continuous feedback.

This explains the idea that prototype — feedback —build increment happens feature by
feature.

Suitable project types

Customized Software

Non-Critical Applications

Projects with Tight Deadlines

Large Software with Many Modules

4(a) Write short notes on Requirement Specification and Requirement Validation. (5M) (L2, COl,
5M)

Requirement Specification — 3 Marks

Requirement Validation — 2 Marks

Requirement Specification is the process of documenting all user and system requirements in a

clear, complete, and unambiguous form.
The output of this process is the Software Requirements Specification (SRS) document, which

acts as an agreement between stakeholders and developers.

Code: 23DS3503
It includes functional requirements, non-functional requirements, constraints, interfaces, and
acceptance criteria, ensuring everyone understands what the system must do.

Requirement Validation ensures that the documented requirements are correct, complete,
consistent, and feasible.

It checks whether the requirements truly represent what the customer needs.

Common validation techniques include reviews, walkthroughs, prototyping, and checklists.

*4(b) Compare and contrast Lines of Code (LOC) and Function Point (FP) metrics.
In what scenarios would you prefer one metric over the other? (L4,C04,5)**

LOC & FP Explanation — 3 Marks

Any Two Comparisons / Preference Reasons — 2 Marks

Lines of Code (LOC):

A size metric that measures the number of physical lines of code written in a program.
It depends on the programming language and coding style.

Useful in projects where design and coding are well defined.

Function Point (FP):

A language-independent metric that measures the functional size of software based on user inputs,
outputs, files, interfaces, and inquiries.

It focuses on what the software does, not how it is coded.

Useful early in the SDLC when code is not available.

Language Dependence:
LOC: Language dependent

FP: Language independent
— Prefer FP for multi-language projects.

Stage of Estimation:
LOC: Can be used only after design/coding details are known

FP: Can be used early during requirement analysis
— Prefer FP in early estimation stages.

Sa)Requirements analysis is unquestionably the most communication-intensive step in software
engineering. Why does the communication path frequently break down? (L3, CO2, SM)*
Explanation — 3M

Reasons -2M

Requirements analysis involves continuous interaction between customers, users, analysts, and
developers.

Since each group has different viewpoints, terminology. expectations, and levels of technical
understanding, the communication process becomes complex.

Any misunderstanding at this stage directly affects the accuracy of requirements, leading to
breakdowns in the communication path.

Reasons for communication breakdown

* Code: 23DS3503
1. Ambiguous or unclear requirements — Stakeholders may express needs in vague terms,
causing misinterpretation.
2. Different perspectives and domain knowledge gaps — Developers may not fully understand
user needs, and users may not understand technical limitations.

3(b) Explain the Basic COCOMO Model. How does it estimate effort and cost for software
projects? (L4,C04.5)

Explanation —4M

Examples -1M

The Basic COCOMO Model is a simple way to estimate how much effort, time, and cost a
software project will need.
It was developed by Barry Boehm.

What it does?

It predicts effort (person-months).It predicts development time (months),It predicts cost

Based only on the size of the project measured in KLOC (thousand lines of code).

How it works (in simple steps)

Step 1: Identify project type

There are 3 types:

Organic — small and simple projects

Semi-detached — medium complexity

Embedded — complex, real-time systems

Step 2: Measure size in KLOC
Example: 20 KLOC or 50 KLOC.

Step 3: Apply formula

Basic COCOMO uses this formula:Effort (person-months):
E=ax(KLOC)b

Development Time (months):

D=cx(E)d

Values of a, b, ¢, d change based on project type.

Simple Example

Suppose a project is organic and has 50 KLOC.
Effort
E=2.4%(50)1.05=142 person-months

Development Time

D=2.5%(142)0.38=26 months

Cost

Code: 23DS3503 PVP 23
If one person-month costs Z1.00,000:

Cost=142x1.00.000=21.42 crore

6(a) Compare and contrast Function-Oriented Design and Object-Oriented Design. (L4, CO4,
5M)

Any five comparisons — 5SM

Aspect Function-Oriented Object-Oriented Design (OOD)
Design (FOD)

Approach Decomposes system into Decomposes system into objects
functions or procedures (entities)

Abstraction Achieved by breaking Achieved by grouping similar
down system into smaller attributes and behaviors into
functions classes (objects)

Data Handling Centralized, shared global Data is decentralized and
data structures encapsulated within objects

Execution Structured analysis and Carried out using UML diagrams
design using data flow
diagrams

Design Direction Top-down approach Bottom-up approach

Starting Point Begins from use case Begins by identifying objects and
diagrams and scenarios classes

Decomposition Decompose at Decompose at class level

Level function/procedure level

Modularity Generally less modular due Generally highly modular with
to centralized data encapsulation

Reusability Generally less reusable Supports high reusability via

encapsulation and inheritance

Coupling Functions tend to be Objects tend to be loosely coupled
more tightly coupled

" Code: 23DS3503

Inheritance Not applicable Supported, allowing inheritance of
attributes and behaviors

Suitable For Computation-sensitive Evolving systems mimicking
applications real-world business domains

*%*6(b) Describe the Extreme Programming (XP) process. What are the key practices that
differentiate XP? From other agile methodologies? (L2, CO1, 5M)

XP process explanation — 3M

Any two XP practices — 2M

Developed by Kent Beck (1990s).

Emphasizes teamwork, communication, feedback.
- Suitable for small to medium projects with frequent changes.

Key Practices
- Small releases

-Simple design

- Pair programming

- Test-driven development (TDD)
- Refactoring

- Collective code ownership

- Continuous integration

- On-site customer

- Coding standards

7(a) Explain the Scrum framework in detail.Describe the roles, artifacts, and workflow involved
in a typical Scrum project. (L2, CO1, 5M)

Scrum framework explanation — 3M

Any two (roles / artifacts / workflow) — 2M

Scrum

[terative and incremental Agile framework.

Focus on project management (not technical coding).

- Handles rapidly changing requirements.

Scrum roles

Product Owner: Maintains product backlog, priorities
Scrum Master: Ensures Scrum practices. removes blockers.
- Development Team: Cross-functional, delivers increments.
Scrum Artifacts

- Product Backlog: Ordered list of requirements.

Sprint Backlog: Items chosen for sprint.

- Increment: Working product at sprint end.

7(b) Discuss the characteristics of a Good User Interface (UI). Why is a well-designed Ul
important? (L3, CO3, SM)

Code: 23DS3503
Any three characteristics — 4M

Characteristics of a Good User Interface Design:

1. Clarity: Information and options must be clearly visible and understandable to reduce
confusion.

2. Consistency: The interface should maintain uniform design and behavior across all screens,
enhancing learnability.

3. Responsiveness: The Ul must respond promptly to user actions, essential for real-time
performance.

4. User Control: Users should have control over interactions with options to undo or redo actions.

5. Simplicity: Avoid unnecessary complexity; provide essential features prominently to facilitate
task completion.

6. Feedback: Immediate and informative feedback guides users on system status and result of
actions.

7. Accessibility: Supports use by people with varying abilities, including those with disabilities.

Why::It enhances usability, boosts user satisfaction, and helps retain customers. A well-designed
interface improves navigation, fosters brand identity, and ensures accessibility

8(a) Describe black-box testing techniques: equivalence class partitioning and boundary value
analysis. (1.2, CO1, SM)

Equivalence Class Partitioning — 3M

Boundary Value Analysis - 2M

Also known as functional testing or specification-based testing. The tester does not need to know
the internal structure of the program. Only the specifications (requirements, possible valid/invalid
inputs, expected outputs) are used.

Used mainly for validation.

Techniques

A)Equivalence Class Partitioning (ECP)

B) Boundary Value Analysis (BVA)

Equivalence Class Partitioning (ECP)

Divide input into groups (classes) where system behaves similarly.
Test only one value from each class to save effort.

Example:
Suppose input is student marks (0—100):

Valid Class: 0—-100

Invalid Class: <0 and >100
Test with one value from each: e.g., 50 (valid), -5 (invalid), 150 (invalid)

Boundary Value Analysis (BVA)
Many errors occur at the edges of input range.
Test with values at, just below, and just above boundaries.

Example:
Marks range: 0—100
Test values: -1, 0. 1 (lower boundary) and 99, 100, 101 (upper boundary)

##8(b) What is ISO 9000 certification? How does ISO 9000 apply to software industry.and how
does it compare with the SEI CMM. ? (L3. CO3. 5M)

« Code: 23DS3503
ISO 9000 explanation — 2M
Any two ISO vs CMM differences — 3M

What is ISO 9000 Certification?

[SO 9000 is a set of international standards for quality management systems.

It helps organizations ensure they consistently meet customer and regulatory requirements.

Getting ISO 9000 certified means yvour company has a well-documented and well-managed
process for delivering quality products or services.

ISO 9000 in the Software Industry
In software, ISO 9000 ensures that:

Requirements are clearly defined.

Development and testing follow documented procedures.

Customer feedback is recorded and acted upon.

It doesn’t tell you how to develop software, but it makes sure your process is organized and
quality-focused.

Feature SO 9000 SEI CMM

Focus Quality management system Software process improvement

Scope All industries Software industry

Certification|Yes, by external auditors No formal certification; it's a model

[Customer-focused, documentation- Process maturity and continuous
heavy improvement

Levels No levels 5 maturity levels

i\t\ého e Any organization Software development companies

9(a) Describe various software quality models.Differentiate between product metrics and process
metrics. . (L2, CO1, 5M)

Software quality models explanation — 3M

Any two product vs process metric differences — 2M

Software Quality Models help us understand what makes software “good” or “bad.”

Some commonly used models are:

1. McCall’s Quality Model
Classifies quality into three categories: Product Operation (correctness, reliability),
Product Revision (maintainability). and Product Transition (portability).

2. Boehm’s Quality Model
Emphasizes high-level characteristics like utility, portability, reliability, and
maintainability. It refines quality through hierarchical attributes.

3. ISO 9126 Quality Model (Now ISO/IEC 25010)

Defines six major quality characteristics: Functionality, Reliability, Usability, Efficiency,

Maintainability, Portability.

Product Metrics vs Process Metrics

Process Metrics
Measure the quality of the software development

process (e.g., effort, schedule variance, defect arrival
rate).

Product Metrics

Measure the quality of the final software
product (e.g., size, defects, complexity).

Code: 23DS3503
Product Metrics Process Metrics

Used to evaluate what has been built. Used to evaluate how the software was built.

9(b) Explain the role and importance of software documentation.Distinguish between internal and
external documentation. . (L2, CO1, 5M)

Documentation role explanation — 3M

Internal vs external docs (any two points) — 2M

Role and Importance of Software Documentation (3M)

1. Helps understand the software — Explains requirements, design. and code, so developers
and new team members can easily understand the system.
Helps in maintenance — Makes it easy to fix bugs, update features, and modify the
software in the future.
Improves communication — Gives clear information to developers, testers, users, and
managers, reducing confusion and errors.

Internal Documentation External Documentation

Written inside the code (comments, clear Written outside the code (SRS, design docs, user
variable names). manuals).

Used mainly by developers. Used by developers. testers, users.

10(a) Explain the characteristics of CASE tools and their significance. (L2, CO1, 5M)

Any three characteristics — 3M
Any two significance points — 2M

CASE Environment — an integrated workspace connecting multiple CASE tools.

In this environment: All design files, code, and documents are stored in one big central repository

The tools are connected — so when a designer changes something, the coder and tester instantly
see it!

* Central Repository — stores all design and project data for shared access.

Benefits:

- Cost and time savings (30-40% effort reduction).
- Improved quality and documentation.

- Reduced errors and rework.

- Enhanced teamwork and easier maintenance.

» Example: IBM Rational Suite integrates design, coding,and testing tools.

**10(b) Elaborate on software maintenance process models.How do these models help estimate
cost and effort? (L4, CO4, 5M)
Maintenance model explanation — 3M
Cost/effort estimation (any two points) — 2M
Different approaches used to manage maintenance work:
1. Quick Fix Model — fixes urgent bugs immediately.
2. Iterative Enhancement Model — planned improvements in cycles.
3. Reuse-Oriented Model — updates using reusable components.
How These Models Help Estimate Cost & Effort?

Code: 23DS3503
1. Clear Steps for Planning:
Each model has defined phases—analysis, modification, testing—so the amount of work
can be easily estimated.
Predicts the Type of Maintenance Work:
Models show whether the task is a small fix, a major enhancement, or a full redesign.
This helps estimate the required time, resources, and cost.
Helps Allocate Resources Effectively (optional):
Knowing the model helps decide how many people and skills are needed, making cost

estimation more accurate.

11a)Describe the architecture of a CASE environment. What are the key components and how do
they interact to support software development and maintenance?
(L2, CO1, 5M)

Architecture explanation — 3M
Components — 2M
* Main Components:

. User Interface — consistent access to all tools (IBM Rational UI).

1
2. Tool Set — includes design, coding, and testing tools (StartUML, Selenium).

3. Object Management System (OMS) — manages project entities and code.
4. Repository — central storage for all project information.
 Example: Repository stores UML diagrams and source code for collaboration.

Architecture::

User Interface |
| (Front-end for all CASE tools) |

Tool Set
| (Design. Analysis, Coding, |
| Testing, Documentation Tools) |

| Object Management System (OMS)|
| (Controls access to project |
| components, diagrams, and data)|

Repository
| (Central database storing all |
project artifacts, diagrams, |

Code: 23DS3503
. | code, and documentation)

11(b) Explain the concept of software reverse engineering in detail. (L2, CO1, 5M)

Reverse engineering explanation — SM

Process of analyzing existing software to understand its design and structure.
Used when design documents are missing or outdated.

Steps: Code analysis — Design recovery — Documentation creation.

Helps in maintaining or modernizing old software systems.

Example: Converting old COBOL code into modern UML design.

