
1

5.JSP(JavaServer Pages)

JavaServer Pages (JSP) is a technology for developing web pages that support dynamic

content which helps developers insert java code in HTML pages by making use of special

JSP tags.

Using JSP, you can collect input from users through web page forms, present records from a

database or another source, and create web pages dynamically.

Advantages of JSP:

vs. Pure Servlets: It is more convenient to write (and to modify!) regular HTML than to

have plenty of println statements that generate the HTML.

JSP Processing:

The following steps explain how the web server creates the web page using JSP:

 As with a normal page, your browser sends an HTTP request to the web server.

 The web server recognizes that the HTTP request is for a JSP page and forwards it to

a JSP engine. This is done by using the URL or JSP page which ends with .jsp instead

of .html.

 The JSP engine loads the JSP page from disk and converts it into a servlet content.

This conversion is very simple in which all template text is converted to println()

statements and all JSP elements are converted to Java code that implements the

corresponding dynamic behavior of the page.

 The JSP engine compiles the servlet into an executable class and forwards the original

request to a servlet engine.

 A part of the web server called the servlet engine loads the Servlet class and executes

it. During execution, the servlet produces an output in HTML format, which the

servlet engine passes to the web server inside an HTTP response.

 The web server forwards the HTTP response to your browser in terms of static HTML

content.

 Finally web browser handles the dynamically generated HTML page inside the HTTP

response exactly as if it were a static page.

2

LIFE CYCLE:

A JSP life cycle can be defined as the entire process from its creation till the destruction

which is similar to a servlet life cycle with an additional step which is required to compile a

JSP into servlet.

The following are the paths followed by a JSP

 Compilation

 Initialization

 Execution

 Cleanup

3

JSP Compilation:

When a browser asks for a JSP, the JSP engine first checks to see whether it needs to compile

the page. If the page has never been compiled, or if the JSP has been modified since it was

last compiled, the JSP engine compiles the page.

The compilation process involves three steps:

 Parsing the JSP.

 Turning the JSP into a servlet.

 Compiling the servlet.

JSP Initialization:

When a container loads a JSP it invokes the jspInit() method before servicing any requests. If

you need to perform JSP-specific initialization, override the jspInit() method:

public void jspInit(){

 // Initialization code...

}

Typically initialization is performed only once and as with the servlet init method, you

generally initialize database connections, open files, and create lookup tables in the jspInit

method.

JSP Execution:

This phase of the JSP life cycle represents all interactions with requests until the JSP is

destroyed.

Whenever a browser requests a JSP and the page has been loaded and initialized, the JSP

engine invokes the _jspService() method in the JSP.

The _jspService() method takes an HttpServletRequest and an HttpServletResponse as its

parameters as follows:

void _jspService(HttpServletRequest request,

 HttpServletResponse response)

{

 // Service handling code...

}

4

The _jspService() method of a JSP is invoked once per a request and is responsible for

generating the response for that request and this method is also responsible for generating

responses to all seven of the HTTP methods ie. GET, POST, DELETE etc.

JSP Cleanup:

The destruction phase of the JSP life cycle represents when a JSP is being removed from use

by a container.

The jspDestroy() method is the JSP equivalent of the destroy method for servlets. Override

jspDestroy when you need to perform any cleanup, such as releasing database connections or

closing open files.

The jspDestroy() method has the following form:

public void jspDestroy()

{

 // Your cleanup code goes here.

}

JSP Elements :

1. JSP Comments

2. JSP Scriptlets

3. JSP Expression

4. JSP Directives

5. JSP Declaration

1. JSP Comments

Since JSP is built on top of HTML, we can write comments in JSP file like html
comments as

<-- This is HTML Comment -->

5

These comments are sent to the client and we can look it with view source
option of browsers.

We can put comments in JSP files as:

<%-- This is JSP Comment--%>

This comment is suitable for developers to provide code level comments
because these are not sent in the client response.

2. JSP Scriptlets

Scriptlet tags are the easiest way to put java code in a JSP page. A scriptlet

tag starts with <% and ends with %>.

Any code written inside the scriptlet tags go into the _jspService() method.

For example:

<%

Date d = new Date();

System.out.println("Current Date="+d);

%>

3. JSP Expression

Since most of the times we print dynamic data in JSP page
using out.print() method, there is a shortcut to do this through JSP

Expressions. JSP Expression starts with <%= and ends with %>.

<% out.print("Pankaj"); %> can be written using JSP Expression

as <%= "Pankaj" %>

Notice that anything between <%= %> is sent as parameter

to out.print() method. Also notice that scriptlets can contain multiple java

statements and always ends with semicolon (;) but expression doesn’t end with
semicolon.

6

4. JSP Directives

JSP Directives are used to give special instructions to the container while JSP
page is getting translated to servlet source code. JSP directives starts

with <%@ and ends with %>

For example, in above JSP Example, I am using page directive to to instruct
container JSP translator to import the Date class.

5. JSP Declaration

JSP Declarations are used to declare member methods and variables of

servlet class. JSP Declarations starts with <%! and ends with %>.

For example we can create an int variable in JSP at class level as <%!
public static int count=0; %>

JSP Implicit Objects:

JSP supports nine automatically defined variables, which are also called implicit objects.

These variables are:

Objects Description

request
This is the HttpServletRequest object associated with the

request.

response
This is the HttpServletResponse object associated with the

response to the client.

out This is the PrintWriter object used to send output to the client.

session This is the HttpSession object associated with the request.

application
This is the ServletContext object associated with application

context.

config This is the ServletConfig object associated with the page.

7

pageContext
This encapsulates use of server-specific features like higher

performance JspWriters.

page
This is simply a synonym for this, and is used to call the

methods defined by the translated servlet class.

Exception
The Exception object allows the exception data to be accessed

by designated JSP.

JSP Directives:

A JSP directive affects the overall structure of the servlet class. It usually has the following

form:

<%@ directive attribute="value" %>

There are three types of directive tag:

Directive Description

<%@ page ... %>
Defines page-dependent attributes, such as scripting language,

error page, and buffering requirements.

<%@ include ... %> Includes a file during the translation phase.

<%@ taglib ... %>
Declares a tag library, containing custom actions, used in the

page

8

JSP Action Tags:

JSP actions use constructs in XML syntax to control the behavior of the servlet engine. You

can dynamically insert a file, reuse JavaBeans components, forward the user to another page,

or generate HTML for the Java plugin.

There is only one syntax for the Action element, as it conforms to the XML standard:

<jsp:action_name attribute="value" />

Action elements are basically predefined functions and there are following JSP actions

available:

Syntax Purpose

jsp:include Includes a file at the time the page is requested

jsp:useBean Finds or instantiates a JavaBean

jsp:setProperty Sets the property of a JavaBean

jsp:getProperty Inserts the property of a JavaBean into the output

jsp:forward Forwards the requester to a new page

jsp:plugin
Generates browser-specific code that makes an OBJECT or

EMBED tag for the Java plugin

jsp:element Defines XML elements dynamically.

jsp:attribute Defines dynamically defined XML element's attribute.

jsp:body Defines dynamically defined XML element's body.

jsp:text Use to write template text in JSP pages and documents.

9

To give an example for a JSP code, first we are going to print the text "Hello Hiox". Try the

the following syntax code.

Example :

<html>

<body>

<! -- This is the JSP file-->

<%

out.println ("Hello HIOX");

%>

</body>

</html>

Result :

Hello HIOX

 JSTL

JSTL (JSP Standard Tag Library)
The JSP Standard Tag Library (JSTL) represents a set of tags to simplify the JSP

development.

Advantage of JSTL

1. Fast Developement JSTL provides many tags that simplifies the JSP.

2. Code Reusability We can use the JSTL tags in various pages.

3. No need to use scriptlet tag It avoids the use of scriptlet tag.

JSTL Tags

There JSTL mainly provides 5 types of tags:

10

AJAX:

AJAX stands for Asynchronous JavaScript and XML. AJAX is a new technique for creating

better, faster, and more interactive web applications with the help of XML, HTML, CSS,

and Java Script.

 Ajax uses XHTML for content, CSS for presentation, along with Document Object

Model and JavaScript for dynamic content display.

 Conventional web applications transmit information to and from the sever using

synchronous requests. It means you fill out a form, hit submit, and get directed to a

new page with new information from the server.

 With AJAX, when you hit submit, JavaScript will make a request to the server,

interpret the results, and update the current screen. In the purest sense, the user

would never know that anything was even transmitted to the server.

 XML is commonly used as the format for receiving server data, although any format,

including plain text, can be used.

Tag Name Description

Core tags The JSTL core tag provide variable support, URL management, flow

control etc. The url for the core tag

is http://java.sun.com/jsp/jstl/core . The prefix of core tag is c.

Function

tags

The functions tags provide support for string manipulation and string

length. The url for the functions tags

is http://java.sun.com/jsp/jstl/functions and prefix is fn.

Formatting

tags

The Formatting tags provide support for message formatting, number

and date formatting etc. The url for the Formatting tags

is http://java.sun.com/jsp/jstl/fmt and prefix is fmt.

XML tags The xml sql tags provide flow control, transformation etc. The url for

the xml tags is http://java.sun.com/jsp/jstl/xmland prefix is x.

SQL tags The JSTL sql tags provide SQL support. The url for the sql tags

is http://java.sun.com/jsp/jstl/sql and prefix is sql.

https://www.javatpoint.com/jstl-core-tags
https://www.javatpoint.com/jstl-function-tags
https://www.javatpoint.com/jstl-function-tags
https://www.javatpoint.com/jstl-formatting-tags
https://www.javatpoint.com/jstl-formatting-tags
https://www.javatpoint.com/jstl-xml-tags
https://www.javatpoint.com/jstl-sql-tags

11

 AJAX is a web browser technology independent of web server software.

 A user can continue to use the application while the client program requests

information from the server in the background.

 Intuitive and natural user interaction. Clicking is not required, mouse movement is a

sufficient event trigger.

 Data-driven as opposed to page-driven.

