
APPLETS

A Java applet is a special kind of Java program that a browser enabled with Java technology

can download from the internet and run. An applet is typically embedded inside a web page

and runs in the context of a browser. An applet must be a subclass of the java.applet.Applet

class. The Applet class provides the standard interface between the applet and the browser

environment.

The Applet class is contained in the java.applet package.Applet contains several methods

that give you detailed control over the execution of your applet.

In addition,java.applet package also defines three interfaces: AppletContext, AudioClip,

and AppletStub.

Applet Basics:

All applets are subclasses of Applet. Thus, all applets must import java.applet. Applets must

also import java.awt. AWT stands for the Abstract Window Toolkit. Since all applets run in

a window, it is necessary to include support for that window by importing java.awt package.

Applets are not executed by the console-based Java run-time interpreter. Rather, they are

executed by either a Web browser or an applet viewer.

Execution of an applet does not begin at main(). Output to your applet’s window is not

performed by System.out.println(). Rather, it is handled with various AWT methods, such

as drawString(), which outputs a string to a specified X,Y location. Input is also handled

differently than in an application.

Once an applet has been compiled, it is included in an HTML file using theAPPLET tag. The

applet will be executed by a Java-enabled web browser when it encounters the APPLET tag

within the HTML file.

 To view and test an applet more conveniently, simply include a comment at the head of your

Java source code file that contains the APPLET tag.

Here is an example of such a comment:

/*

<applet code="MyApplet" width=200 height=60>

</applet>

*/

This comment contains an APPLET tag that will run an applet called MyApplet in a window

that is 200 pixels wide and 60 pixels high. Since the inclusion of an APPLET command

makes testing applets easier, all of the applets shown in this tutorial will contain the

appropriate APPLET tag embedded in a comment.

The Applet Class:

Applet extends the AWT class Panel. In turn, Panel extends Container, which extends

Component. These classes provide support for Java’s window-based, graphical interface.

Thus, Applet provides all of the necessary support for window-based activities

Applet Architecture:

An applet is a window-based program. As such, its architecture is different from the so-called

normal, console-based programs .

 First, applets are event driven. it is important to understand in a general way how the event-

driven architecture impacts the design of an applet.

 Here is how the process works. An applet waits until an event occurs. The AWT notifies the

applet about an event by calling an event handler that has been provided by the applet. Once

this happens, the applet must take appropriate action and then quickly return control to the

AWT.

An Applet Skeleton:

Four methods—init(), start(), stop(), and destroy()—aredefined by Applet. Another,

paint(), is defined by the AWT Component class. All applets must import java.applet.

Applets must also import java.awt.

These five methods can be assembled into the skeleton shown here:

// An Applet skeleton.

import java.awt.*;

import java.applet.*;

/*

<applet code="AppletSkel" width=300 height=100>

</applet>

*/

public class AppletSkel extends Applet

{

 // Called first.

 public void init()

 {

 // initialization

 }

 /* Called second, after init(). Also called whenever

 the applet is restarted. */

 public void start()

{

 // start or resume execution

}

 // Called when the applet is stopped.

 public void stop()

{

 // suspends execution

 }

 /* Called when applet is terminated. This is the last

 method executed. */

 public void destroy()

 {

 // perform shutdown activities

 }

 // Called when an applet's window must be restored.

 public void paint(Graphics g)

 {

 // redisplay contents of window

 }

}

Applet Initialization and Termination:

It is important to understand the order in which the various methods shown in theskeleton are

called. When an applet begins, the AWT calls the following methods, in this sequence:

1. init()

2. start()

3. paint()

When an applet is terminated, the following sequence of method calls takes place:

1. stop()

2. destroy()

init():init() method is called once—the first time an applet is loaded. The init() method is

the first method to be called. This is where you should initialize variables.

start():The start() method is called after init(). It is also called to restart an applet after it

has been stopped(i.e start() method is called every time, the applet resumes execution).

Paint():The paint() method is called each time your applet’s output must be redrawn. This

situation can occur for several reasons. For example, the window in which the applet is

running may be overwritten by another window and then uncovered. Or the applet window

may be minimized and then restored. paint() is also called when the applet begins execution.

Whatever the cause, whenever the applet must redraw its output, paint() is called. The

paint() method has one parameter of type Graphics.

stop():The stop() method is called when the applet is stopped(i.e for example ,when the

applet is minimized the stop method is called).

destroy():The destroy() method is called when the environment determines that your applet

needs to be removed completely from memory(i.e destroy() method is called when the applet

is about to terminate).The stop() method is always called before destroy().

Simple Applet programe:
SimpleApplet.java

import java.awt.*;

import java.applet.*;

/*

<applet code="SimpleApplet" width=300 height=100>

</applet>

*/

public class SimpleApplet extends Applet

{

 String msg="";

 // Called first.

 public void init()

 {

 msg="Hello";

 }

 /* Called second, after init().

 Also called whenever the applet is restarted. */

 public void start()

 {

 msg=msg+",Welcome to Applet";

 }

 // whenever the applet must redraw its output, paint() is called.

 public void paint(Graphics g)

 {

 g.drawString(msg,20,20);

 }

}

Output:

How To Run an Applet Programe:

There are two ways in which you can run an applet:

■ Executing the applet within a Java-compatible Web browser.

■ Using an applet viewer, such as the standard SDK tool, appletviewer. An applet viewer

executes your applet in a window. This is generally the fastestand easiest way to test your

applet.

Using an applet viewer to run applet(demonstrates you to run SimpleApplet.java):

Place the applet tag in comments in java source code.

Note:Code attribute value must be equal to name of class which extends Applet class.

Compiling: javac SimpleApplet.java

 Run: AppletViewer SimpleApplet.java

Executing the applet within a Java-compatible Web browser(demonstrates you to run

SimpleApplet.java):

 Compiling: javac SimpleApplet.java

 Create an Html file and embeded Applet tag in html file.

 Attributes in applet tag:

 Code(attribute):specify name of applet class to load into browser.

 Width(attribute):width of an applet.

 Height(attribute):height of an applet.

SimpleApplet.html

<html>

 <body>

 <applet code="SimpleApplet" width=300 height=100></applet>

 </body>

</html>

When you open SimpleApplet.html , SimpleApplet.class applet is loaded into browser.

Note: The Browser must be java enabled to load applet programe.

Simple Applet Display Methods:
As we’ve mentioned, applets are displayed in a window and they use the AWT to perform

input and output.To output a string to an applet, use drawString(), which is a member of the

Graphics class.Graphics class is defined in java.awt package.

 void drawString(String message, int x, int y)

Here, message is the string to be output and x and y are x-coordinate ,y-coordinate

respectively. In a Java window, the upper-left corner is location 0,0.

To set the background color of an applet’s window, use setBackground(). To set the

foreground color (the color in which text is shown, for example), use setForeground().

These methods are defined by Component, and they have the following general forms:

void setBackground(Color newColor)

void setForeground(Color newColor)

Here, newColor specifies the new color. The class Color defines the constants shown

here that can be used to specify colors:

Color.black Color.magenta

Color.blue Color.orange

Color.cyan Color.pink

Color.darkGray Color.red

Color.gray Color.white

Color.green Color.yellow

Color.lightGray

For example, this sets the background color to green and the text color to red:

 setBackground(Color.green);

 setForeground(Color.red);

Sample.java

/* A simple applet that sets the foreground and background colors and outputs a string. */

import java.awt.*;

import java.applet.*;

/*

<applet code="Sample" width=300 height=200>

</applet>

*/

 public class Sample extends Applet

 {

 String msg;

 public void init()

 {

 setBackground(Color.gray);

 setForeground(Color.white);

 msg = "Inside init() --";

 }

 // Initialize the string to be displayed.

 public void start()

 {

 msg += " Inside start() --";

 }

 // Display msg in applet window.

 public void paint(Graphics g)

 { msg += " Inside paint().";

 g.drawString(msg, 10, 30);

 }

}

Output:

Requesting Repainting:

Whenever your applet needs to update the information displayed in its window, it simply

calls repaint().The repaint() method is defined by the AWT. It causes the AWT run-time

system to execute a call to your applet’s update() method, which, in its default

implementation, calls paint().

The simplest version of repaint() is shown here:

 void repaint()

This version causes the entire window to be repainted. The following version specifies a

region that will be repainted:

 void repaint(int left, int top, int width, int height)

Here, the coordinates of the upper-left corner of the region are specified by left and top, and

the width and height of the region are passed in width and height. These dimensions are

specified in pixels. You save time by specifying a region to repaint.

The other two versions of repaint():

 void repaint(long maxDelay)

 void repaint(long maxDelay, int x, int y, int width, int height)

Here, maxDelay specifies the maximum number of milliseconds that can elapse before

update() is called.

Using the Status Window:
In addition to displaying information in its window, an applet can also output a message to

the status window of the browser or applet viewer on which it is running. To do so, call

showStatus() with the string that you want displayed.

// Using the Status Window.

import java.awt.*;

import java.applet.*;

/*

<applet code="StatusWindow" width=300 height=300>

</applet>

*/

public class StatusWindow extends Applet

{

 public void init()

 {

 setBackground(Color.cyan);

 }

 // Display msg in applet window.

 public void paint(Graphics g)

 {

 g.drawString("This is in the applet window.", 10, 20);

 showStatus("This is shown in the status window.");

 }

}

Output:

The HTML APPLET Tag:
< APPLET

 [CODEBASE = codebaseURL]

 CODE = appletFile

 [ALT = alternateText]

 [NAME = appletInstanceName]

 WIDTH = pixels

 HEIGHT = pixels

 [ALIGN = alignment]

 [VSPACE = pixels]

 [HSPACE = pixels]

>

 [< PARAM NAME = AttributeName VALUE = AttributeValue>]

 [< PARAM NAME = AttributeName2 VALUE = AttributeValue>]

 . . .

 [HTML Displayed in the absence of Java]

</APPLET>

Let’s take a look at each part now.

CODEBASE: CODEBASE is an optional attribute that specifies the base URL of the

applet code, which is the directory that will be searched for the applet’s executable

class file (specified by the CODE tag).

CODE :CODE is a required attribute that gives the name of the file containing your

applet’s compiled .class file. This file is relative to the code base URL of the applet,

which is the directory that the HTML file was in or the directory indicated by

CODEBASE if set.

ALT :The ALT tag is an optional attribute used to specify a short text message that

should be displayed if the browser understands the APPLET tag but can’t currently

run Java applets.

NAME: NAME is an optional attribute used to specify a name for the applet instance.

Applets must be named in order for other applets on the same page to find them by

name and communicate with them.

WIDTH AND HEIGHT :WIDTH and HEIGHT are required attributes that give the

size (in pixels) of the applet display area.

ALIGN: ALIGN is an optional attribute that specifies the alignment of the applet.The

possible values:LEFT, RIGHT, TOP, BOTTOM, MIDDLE, BASELINE, TEXTTOP,

ABSMIDDLE,and ABSBOTTOM.

VSPACE AND HSPACE :These attributes are optional. VSPACE specifies the space,

in pixels, above and below the applet. HSPACE specifies the space, in pixels, on each

side of the applet.

PARAM NAME AND VALUE: The PARAM tag allows you to specify applet specific

arguments in an HTML page. Applets access their attributes with the getParameter()

method.

Passing Parameters to Applets:

The APPLET tag in HTML allows you to pass parameters to your applet. To retrieve a

parameter, use the getParameter() method. It returns the value of the specified parameter in

the form of a String object. Here is an example that demonstrates passing parameters:

ParamDemo.java

import java.awt.*;

import java.applet.*;

/*

<applet code="ParamDemo" width=300 height=300>

<param name=fontName value=Courier>

<param name=fontSize value=14>

<param name=leading value=2>

<param name=accountEnabled value=true>

</applet>

*/

public class ParamDemo extends Applet

{

 String fn=null,fz=null,l=null,ae=null;

 public void init()

 {

 setBackground(Color.gray);

 setForeground(Color.white);

 }

 public void start()

 {

 fn=getParameter("fontName");

 fz=getParameter("fontSize");

 l=getParameter("leading");

 ae=getParameter("accountEnabled");

 repaint();

 }

 public void paint(Graphics g)

 {

 g.drawString("FontName:"+fn,10,10);

 g.drawString("FontSize:"+fz,10,30);

 g.drawString("Leading:"+l,10,50);

 g.drawString("AccountEnabled:"+ae,10,70);

 }

}

Output:

getDocumentBase() and getCodeBase():

Java will allow the applet to load data from the directory holding the HTML file that started

the applet (the document base) and the directory from which the applet’s class file was loaded

(the code base). These directories are returned as URL objects by getDocumentBase() and

getCodeBase().

Bases.java

import java.awt.*;

import java.applet.*;

import java.net.*;

/*<applet code="Bases" width=300 height=50></applet>*/

public class Bases extends Applet

{

 // Display code and document bases.

 public void paint(Graphics g)

 {

 String msg;

 //URL class is defines in java.net package.

 URL url = getCodeBase(); // get code base

 msg = "Code base: " + url.toString();

 g.drawString(msg, 10, 20);

 url = getDocumentBase(); // get document base

 msg = "Document base: " + url.toString();

 g.drawString(msg, 10, 40);

 }

}

Sample output from this program is shown here:

AppletContext and showDocument():

To allow your applet to transfer control to another URL, you must use the showDocument()

method defined by the AppletContext interface.

ACDemo.java

import java.awt.*;

import java.applet.*;

import java.net.*;

/*<applet code="ACDemo" width=300 height=50></applet>*/

public class ACDemo extends Applet

{

 URL u;

 public void start()

 {

 AppletContext ac = getAppletContext();

 URL url = getCodeBase(); // get url of this applet

 try

 {

 u=new URL(url+"Test.html");

 ac.showDocument(u);

 }

 catch(MalformedURLException e)

 {

 showStatus("URL not found");

 }

 }

}

Explanation:In this programe,the control is transfered from ACDemo.class (i.e applet) to

Test.html file.

Two Types of Applets:
There are two varieties of applets. The first are those based directly on the Applet class.

These applets use the Abstract Window Toolkit (AWT) to provide the graphic user interface

(or use no GUI at all). This style of applet has been available since Java was first created.

The second type of applets are those based on the Swing class JApplet. Swing applets use

the Swing classes to provide the GUI. Swing offers a richer and often easier-to-use user

interface than does the AWT. Thus, Swing-based applets are now the most popular. JApplet

inherits Applet, all the features of Applet are also available in Japplet.

