
Chapter 4: Combinational Logic
4.1 Introduction
4.2 Combinational Circuits
4.3 Analysis Procedure
4.4 Design Procedureg
4.5 Binary Adder–Subtractor
4.6 Decimal Adder
4.7 Binary Multiplier
4.8 Magnitude Comparator4.8 Magnitude Comparator
4.9 Decoders
4 10 Encoders4.10 Encoders
4.11 Multiplexers

NCNU_2013_DD_4_1

4.1 Introduction
• Logic circuits may be combinational or sequential.
• A combinational circuit consists of logic gates whose outputs at any time are

d t i d f l th t bi ti f i tdetermined from only the present combination of inputs.
• The operation of combinational circuits can be specified logically by a set of

Boolean functions.
• Sequential circuits contain storage elements in addition to logic gates.
• The outputs of sequential circuits are a function of the inputs and the state of the

lstorage elements.
• Because the state of the storage elements is a function of previous inputs, the

outputs of a sequential circuit depend not only on present values of inputs, butoutputs of a sequential circuit depend not only on present values of inputs, but
also on past inputs, and the circuit behavior must be specified by a time sequence
of inputs and internal states.
S ti l i it di d i Ch t 5 d 8• Sequential circuits are discussed in Chapters 5 and 8 .

NCNU_2013_DD_4_2

4.2 Combinational Circuits
• A combinational circuit consists of an interconnection of logic gates.
• Combinational circuits react to the values at their inputs and produce the value of

th t t i l t f i bi i f ti f th i i t d t tthe output signal, transforming binary information from the given input data to a
required output data.

• A block diagram of a combinational circuit is shown. g

• The n inputs come from an external source; the m outputs are produced by the
combinational circuit and go to an external destination. g

• Each input and output variable is an analog electrical signal whose values are
interpreted to be a binary signal that represents logic 1 and logic 0.

NCNU_2013_DD_4_3

• For n input variables, there are 2n possible combinations.
• For each possible input combination, there is one possible value for each output.
• Thus, a combinational circuit can be specified with a truth table that lists the

output values for each combination of input variables.
• A combinational circuit also can be described by m Boolean functions one forA combinational circuit also can be described by m Boolean functions, one for

each output variable.
• Each output function is expressed in terms of the n input variables.

• Several extensively used combinational circuits, such as adders, subtractors,
multipliers comparators decoders encoders and multiplexers are available inmultipliers, comparators, decoders, encoders, and multiplexers, are available in
standard integrated circuit components and used as standard cells in complex
very large scale integrated (VLSI) circuits.

NCNU_2013_DD_4_4

4.3 Analysis Procedure
• The analysis is to determine the function of an implemented circuit.
• This task starts with a given logic diagram and culminates with a set of Boolean

f ti t th t bl ibl l ti f th i it tifunctions, a truth table, or, possibly, an explanation of the circuit operation.
• The analysis can be performed manually by finding the Boolean functions or

truth table or by using a computer simulation program.y g p p g
• The first step in the analysis is to make sure that the given circuit is

combinational and not sequential.
• A combinational circuit has no feedback paths or memory elements.
• A feedback path is a connection from the output of one gate to the input of a

second gate whose output forms part of the input to the first gate.second gate whose output forms part of the input to the first gate.
• Feedback paths in a digital circuit define a sequential circuit.

NCNU_2013_DD_4_5

Steps to Obtain Output Boolean Functions
• To obtain the output Boolean functions from a logic diagram, we proceed as

follows:
1 L b l ll t t t th t f ti f i t i bl ith bit1. Label all gate outputs that are a function of input variables with arbitrary

symbols—but with meaningful names. Determine the Boolean functions for
each gate output.

2. Label the gates that are a function of input variables and previously labeled
gates with other arbitrary symbols. Find the Boolean functions for these gates.

3 Repeat the process outlined in step 2 until the outputs of the circuit are3. Repeat the process outlined in step 2 until the outputs of the circuit are
obtained.

4. By repeated substitution of previously defined functions, obtain the output
Boolean functions in terms of input variables.

NCNU_2013_DD_4_6

Example

F2 = AB + AC + BC
T1 = A + B + C
T = ABC



T2 = ABC

T3 = F2T1
 T3 F2T1

F1 = T3 + T2

F1 = T3 + T2 = F’2T1 + ABC = (AB + AC + BC)’(A + B + C) + ABC


1 3 2 2 1
= (A’ + B’)(A’ + C’)(B’ + C’)(A + B + C) + ABC
= (A’ + B’C’)(AB’ + AC’ + BC’ + B’C) + ABC
= A’BC’ + A’B’C + AB’C’ + ABC



NCNU_2013_DD_4_7

 A BC A B C AB C ABC

F1 sum of a full-adder, F2 carry of a full-adder


Steps to Obtain Truth Table
• Obtain the truth table directly from the logic diagram as follows:

1. Determine the number of input variables. For n inputs, form the 2n possible
input combinations and list the binary numbers from 0 to (2n - 1) in a tableinput combinations and list the binary numbers from 0 to (2 1) in a table.

2. Label the outputs of selected gates with arbitrary symbols.
3. Obtain the truth table for the outputs of those gates which are a function of the

input variables only.
4. Proceed to obtain the truth table for the outputs of those gates which are a

function of previously defined values until the columns for all outputs arefunction of previously defined values until the columns for all outputs are
determined.

NCNU_2013_DD_4_8

4-4 Design Procedure
• The design is to derive a logic circuit or a set of Boolean functions from the

specification of the design objective.
Th d i d i l th f ll i t• The design procedure involves the following steps:
1. From the specifications of the circuit, determine the required number of inputs

and outputs and assign a symbol to each.p g y
2. Derive the truth table that defines the required relationship between inputs and

outputs.
b i h i lifi d l f i f h f i f h3. Obtain the simplified Boolean functions for each output as a function of the

input variables.
4. Draw the logic diagram and verify the correctness of the design (manually or4. Draw the logic diagram and verify the correctness of the design (manually or

by simulation).

NCNU_2013_DD_4_9

Design Exploration
• Truth table gives the exact definition of a combinational circuit.
• The output binary functions listed in the truth table are simplified by any

il bl th d h l b i i l ti th th davailable method, such as algebraic manipulation, the map method, or a
computer-based simplification program.

• Practical design must consider such constraints as the number of gates, number of g g ,
inputs to a gate, propagation time of the signal through the gates, number of
interconnections, limitations of the driving capability of each gate (i.e., the
number of gates to which the output of the circuit may be connected), and variousnumber of gates to which the output of the circuit may be connected), and various
other criteria that must be taken into consideration when designing integrated
circuits.
Si h i i di d b h i l li i i i diffi l• Since each constraint is dictated by the particular application, it is difficult to
make a general statement about what constitutes an acceptable implementation.

• In most cases, the simplification begins by satisfying an elementary objective, , p g y y g y j ,
such as producing the simplified Boolean functions in a standard form, then the
simplification proceeds with further steps to meet other performance criteria.

NCNU_2013_DD_4_10

Code Conversion Example
• BCD to excess-3 code

– The truth table

NCNU_2013_DD_4_11

NCNU_2013_DD_4_12

Simplified Functions and Logic Diagram

NCNU_2013_DD_4_13

4-5 Binary Adder-Subtractor
• Half adder

– 0 + 0 = 0; 0 + 1 = 1; 1 + 0 = 1; 1 + 1 = 10
– two input variables: x, y
– two output variables: C (carry), S (sum)

tr th table– truth table

– Boolean functions

NCNU_2013_DD_4_14

Implementation of Half Adder
• sum of products exclusive-OR and AND

NCNU_2013_DD_4_15

Full-Adder
• The arithmetic sum of three input bits
• Three input bits

x y: two significant bits– x, y: two significant bits
– z: the carry bit from the previous lower significant bit

• Two output bits: C, STwo output bits: C, S
• Truth table

NCNU_2013_DD_4_16

Boolean Functions of Full Adder

S = x ⊕ y ⊕ z C = xy + (x + y) z

NCNU_2013_DD_4_17

Sum-of-Product Implementation of Full Adder

NCNU_2013_DD_4_18

Implementation of Full Adder with Half Adders

S = x ⊕ y ⊕ z C = xy + (x + y) z
= xy + (x ⊕ y) z

NCNU_2013_DD_4_19

Binary Adder
• A binary adder can be constructed with full adders connected in cascade, with the

output carry from each full adder connected to the input carry of the next full
adder in the chain (called ripple-carry adder)adder in the chain (called ripple-carry adder).

• Example: 4-bit binary adder Is it possible to design it with truth table?

A = 1011A = 1011
B = 0011
S = 1110

NCNU_2013_DD_4_20

Carry Propagation
• The total propagation time is equal to the sum of the propagation delay of logic

gates along a path from input to output.
Th l t ti d l ti i dd i th ti it t k th t• The longest propagation delay time in an adder is the time it takes the carry to
propagate through the full adders. (called critical path)

• Each bit of the sum output, Si, in the adder will be in its steady-state final value p , i, y
only after the input carry to that stage has been propagated.

• Consider output S3 in the 4-bit adder, inputs A3 and B3 are available as soon as
input signals are applied to the adderinput signals are applied to the adder.

• However, input carry C3 does not settle to its final value until C2 is available from
the previous stage.

• Similarly, C2 has to wait for C1 and so on down to C0.
• Thus, only after the carry propagates and ripples through all stages will the last

t t S d C ttl t th i fi l t loutput S3 and carry C4 settle to their final correct value.
• This will be a serious problem if the adder has a long bit length.

NCNU_2013_DD_4_21

Carry Propagation in Binary Adder
• Re-label the half-adder implementation with Pi = Ai⊕Bi and Gi = Ai Bi

• Pi and Gi settle to steady-state values after Ai and Bi propagate through their
ti trespective gates.

• The input carry Ci to the output carry Ci+1 propagates through an AND gate and
an OR gate. If there are four full adders in the adder, the output carry C4 would g , p y 4
have 2 * 4 = 8 gate levels from C0 to C4.

• For an n-bit adder, there are 2n gate levels for the carry to propagate from input
to outputto output.

Pi = Ai⊕Bi
Gi = Ai Bi

NCNU_2013_DD_4_22

Carry Look-ahead Adder
• Reduce the carry propagation delay using look-ahead carry (more complex

mechanism, yet faster)
T i l d fi d C P t P A B d C G t G• Two signals defined: Carry Propagate: Pi = Ai Bi and Carry Generate: Gi =
AiBi

• Sum and Carry are re-defined as: Si = Pi Ci and Ci+1 = Gi + PiCiy i i i i+1 i i i

• The carry signals of the adder become
– C0 = carry input
– C1 = G0 + P0C0

– C2 = G1 + P1C1 = G1 + P1(G0 + P0C0) = G1 + P1G0 + P1P0C0

C G P C G P G P P G P P P C– C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

• C3 does not have to wait for C2 and C1 to propagate; in fact, C3 is propagated at
the same time as C and Cthe same time as C1 and C2.

NCNU_2013_DD_4_23

Carry Look-ahead Generator

Pi = Ai⊕BiPi Ai⊕Bi
Gi = Ai Bi

NCNU_2013_DD_4_24Where is its longest propagation delay path?

Four-bit Carry Look-ahead Adder

There exist many other
faster adders and are not

ti d i thi

NCNU_2013_DD_4_25

mentioned in this course.

Binary Adder-Subtractor
• A - B = A + (2’s complement of B)
• 4-bit adder-subtractor

– M = 0A + B; M = 1 A + B’ + 1M 0 A + B; M 1  A + B + 1
• Output V is for detecting an overflow.

NCNU_2013_DD_4_26

Overflow
• Overflow: two n-digit numbers are added and the sum becomes (n+1)-digit.
• Overflow is a problem in computers because the number of bits that hold the

b i fi it d (+1) bit lt t b t d i bit dnumber is finite and a (n+1)-bit result cannot be stored in an n-bit word.
• Many computers detect the occurrence of an overflow, a corresponding flip-flop

(1-bit memory) is set that can then be checked by the user (or program).(y) y (p g)
• Add two positive numbers and obtain a negative number
• Add two negative numbers and obtain a positive number
• An overflow condition can be detected by observing the carry into the sign bit

position and the carry out of the sign bit position.
• V = 0 no overflow; V = 1 overflow (see previous page)• V = 0  no overflow; V = 1 overflow (see previous page)

Example: 8-bit signed addition, 2’s complement, ranges -128 ~ +127

NCNU_2013_DD_4_27

4-6 Decimal Adder
• Add two BCD's

– 9 inputs: two BCD's and one carry-in
– 5 outputs: one BCD and one carry-out

B8 A8 B4 A4 B2 A2 B1 A1

1-digit
BCD Adder

CinCout BCD Adderout

S8 S4 S2 S1

• Design approaches
– A truth table with 29 entries

8 4 2 1

– use binary full Adders
» the decimal sum must be not larger than 19 (= 9 + 9 + 1)

the BCD s m is no larger than 9; (S S S S) ≦ (1001)

NCNU_2013_DD_4_28

» the BCD sum is no larger than 9; (S8S4S2S1) ≦ (1001)

The Sum of a BCD Adder

NCNU_2013_DD_4_29

BCD Adjustment
• When the binary sum is equal to or less than 1001, the corresponding BCD

number is identical, no conversion is needed.
Wh th bi i t th 1001 dditi f 6 (0110) t it t• When the binary sum is greater than 1001, an addition of 6 (0110) converts it to
the correct BCD representation and also produces an output carry as required.

• Modifications are needed if the sum > 9 (1001)()
– C must be set to 1, if

» K = 1, or C = K +Z8Z4 + Z8Z2» Z8Z4 = 1, or
» Z8Z2 = 1

C = K +Z8Z4 + Z8Z2

= K +Z8(Z4 + Z2)

• When C = 1, add 0110 to the binary sum.

NCNU_2013_DD_4_30

BCD Adder

NCNU_2013_DD_4_31

Binary Multiplier
• Performed in the same way as multiplication of decimal numbers.
• Partial products: AND operations.
• 2 bit x 2 bit 4 bit• 2-bit x 2-bit  4-bit

x

+

1-bit multiplication AND

0 x 0 = 0
0 x 1 = 0
1 x 0 0

NCNU_2013_DD_4_32

1 x 0 = 0
1 x 1 = 1

• For J multiplier and K multiplicand bits, we need (J * K) AND gates and (J - 1)
K-bit adders to produce a product of (J + K) bits.

• K = 4 and J = 3:
– 12 AND gates and
– two 4-bit adders
– produce a 7-bit product.

There are a lot of multipliers
has been presented for high

d li ti

NCNU_2013_DD_4_33

speed applications.

4-8 Magnitude Comparator
• A magnitude comparator compares two numbers A and B and determines their

relative magnitudes.
Th lt f i b t t b• The results of comparison between two numbers are:
– A > B, A = B, A < B

• Design ApproachesDesign Approaches
– the truth table for two n-bit numbers comparison

» 2
2n

entries - too cumbersome for large n
– use inherent regularity of the problem (algorithm approach)

» algorithm — a procedure which specifies a finite set of steps
» reduce design efforts
» reduce human errors

NCNU_2013_DD_4_34

Comparison Algorithm
• Consider two 4-bit numbers, A = A3A2A1A0, B = B3B2B1B0

• A and B are equal (A = B) if A3 = B3, A2 = B2, A1 = B1, and A0 = B0.
• The equality of each pair of bits can be expressed with an exclusive-NOR

function as: xi = AiBi + Ai’ Bi’ for i = 0, 1, 2, 3
• xi = 1 only if the pair of bits in position i are equal (both are 1 or both are 0)xi 1 only if the pair of bits in position i are equal (both are 1 or both are 0).
• For equality to exist (A = B), all xi variables must be equal to 1: (A = B) = x3x2x1x0

• To determine whether (A > B) or (A < B), starting from the MSB, if the two bits
are equal, then compare the next lower significant pair of bits until a pair of
unequal bits is reachedunequal bits is reached.

• If the corresponding bit of A is 1 and that of B is 0, we conclude that A > B.
• If the corresponding digit of A is 0 and that of B is 1, we have A < B. p g g ,
• The sequential comparison can be expressed by the two Boolean functions

– (A > B) = A3B3’ + x3A2B2’ + x3x2A1B1’ + x3x2x1A0B0’

NCNU_2013_DD_4_35

– (A < B) = A3’B3 + x3A2’B2 + x3x2A1’B1 + x3x2x1A0’B0

XNOR

NCNU_2013_DD_4_36

4-9 Decoders
• A decoder converts binary information from n input lines to a maximum of 2n

unique output lines.
A t d d (≦ 2n)• A n-to-m decoder (m ≦ 2n)
– a binary code of n bits has 2

n
distinct information

– n input variables; up to 2
n

output linesn input variables; up to 2 output lines
– only one output can be active (high) at any time

NCNU_2013_DD_4_37

3-to-8 decoder

each output = a minterm

NCNU_2013_DD_4_38

Two-to-four Decoder with Enable
• Enable input is added to control the circuit operation.

NCNU_2013_DD_4_39

The demultiplexer described in textbook is questionable.
It will be talked later.

Decoder Expansion
• Expand two 3-to-8 decoder to a 4-to-16 decoder

1-to-2 decoder

Ho abo t a 5 to 32 decoder?

NCNU_2013_DD_4_40

• How about a 5-to-32 decoder?

Universal Combinational Logic Implementation
• A decoder provides the 2n minterms of n input variables.
• A decoder and an external OR gate can implement any Boolean function of n

input variables in sum-of-minterm forminput variables in sum of minterm form.
• For example, see Table 4.4, a full-adder has its sum S(x,y,z) = (1,2,4,7) and

carry C(x,y,z) = (3,5,6,7).

• Two possible approaches using decoder

NCNU_2013_DD_4_41

– OR(minterms of F): k inputs
– NOR(minterms of F‘): 2

n
 k inputs

4-10 Encoders
• The inverse function of a decoder
• 2n (or fewer) input lines and n output lines
• The output lines generate the binary code corresponding to the input value.
• Example:

z = D1 + D3 + D5 + D7 can be implemented with OR gates
D + D + D + D

NCNU_2013_DD_4_42

y = D2 + D3 + D6 + D7

x = D4 + D5 + D6 + D7

Priority Encoder
• Encoder that includes the priority function
• Resolve the ambiguity of illegal inputs, only one of the input is encoded, the

i t h i th hi h t i it ill t k dinput having the highest priority will take precedence.
• Example:

D h th hi h t i it» D3 has the highest priority
» D0 has the lowest priority
» X: don't-care conditions

NCNU_2013_DD_4_43

» X: don t care conditions
» V: valid output indicator

Maps for Simplifying x and y

• x = D2 + D3

• y = D3 + D1 D2’
• V = D0 + D1 + D2 + D3

NCNU_2013_DD_4_44

4-11 Multiplexers
• Select from one of many inputs and directs it to a single output, controlled by a

set of selection lines. A multiplexer is also called a data selector.
N ll th 2n i t d l ti li h bit bi ti• Normally, there are 2n inputs and n selection lines whose bit combinations
determine which input is selected.

• Example: (two-to-one multiplexer) S I0 I1 Yp (p)
– Y = I0 if S = 0, and Y = I1 if S = 1.
– Y = S’I0 + SY1

0 0 X 0
0 1 X 1
1 X 0 0
1 X 1 1

NCNU_2013_DD_4_45

4-to-1 Multiplexer

2-to-4 decoder • AND gates act as a switch
• OR gate will face a large fan-OR gate will face a large fan

in if the input number grow

NCNU_2013_DD_4_46

Quadruple 2-to-1 Multiplexer

A = A3A2A1A0

B = B3B2B1B0

Y = Y3Y2Y1Y0

Y = A means
Y3 = A3, Y2 = A2

Y1 = A1, Y0 = A0

NCNU_2013_DD_4_47

Boolean Function Implementation
• MUX has a structure composed of a decoder and an OR gate
• 2

n
-to-1 MUX can implement any Boolean function of n+1 input variables

• n of these input variables are used as the selection lines• n of these input variables are used as the selection lines
• The remaining single variable is used for the data inputs.
• If the single variable is denoted by z, each data input of the multiplexer will be z,If the single variable is denoted by z, each data input of the multiplexer will be z,

z’, 1, or 0.
• Example:

NCNU_2013_DD_4_48

Another example: F(A, B, C, D) =  (1, 3, 4, 11, 12, 13, 14, 15)

NCNU_2013_DD_4_49

Three-state Gate
• The third state is a high-impedance state in which

(1) the logic behaves like an open circuit, which means that the output appears to
b di t dbe disconnected,

(2) the circuit has no logic significance, and
(3) the circuit connected to the output of the three-state gate is not affected by the(3) the circuit connected to the output of the three state gate is not affected by the

inputs to the gate.
• The most commonly used is the three-state buffer gate. (a.k.a. tri-state buffer)

• A multiplexer can be constructed
with three-state gates.g

• Example: 2-to-1 multiplexer
Y = A if Select = 0, Y = B if Select = 1

NCNU_2013_DD_4_50

4-to-1 Multiplexer using Three-state Buffer

NCNU_2013_DD_4_51

Homework #4

• 4.2

• 4.4 (a)

• 4.9

• 4 16• 4.16

• 4.32 (a)()

NCNU_2013_DD_4_52

