
SYMMETRIC KEY DISTRIBUTION USING 

SYMMETRIC ENCRYPTION 

 
 

For symmetric encryption to work, the two parties to an exchange must share the 

same key, and that key must be protected from access by others. Furthermore, fre- 

quent key changes are usually desirable to limit the amount of data compromised if 

an attacker learns the key. Therefore, the strength of 

any cryptographic system rests with the key distribution technique, a term that refer

s to the means of deliver- ing a key to two parties who wish to exchange data 

without allowing others to see the key. For two parties A and B, key distribution 

can be achieved in a number of ways, as follows: 

1.                                       A can select a key and physically deliver it to  B. 

2.                                       A third party can select the key and physically deliver it to A and  B. 

3.                                       If A and B have previously and recently 

used a key, one party can transmit 

the new key to the other, encrypted using the old key. 

4.                                       If A and B each has an encrypted connection to a third party C, C can 

deliver a key on the encrypted links to A and B. 

Options 1 and 2 call for manual delivery of a key. For link encryption, this is a 

reasonable requirement, because each link encryption device is going to be exchang- 

ing data only with its partner on the other end of the link. However, for end-to-end 

encryption over a network, manual delivery is awkward. In a distributed system, any 

given host or terminal may need to engage in exchanges with many other hosts and 

terminals over time. Thus, each device needs a number of keys supplied dynamically. 

The problem is especially difficult in a wide-area distributed system. 

The scale of the problem depends on the number of communicating pairs that 

must be supported. If end-to-end encryption is done at a network or IP level, then a 

key is needed for each pair of hosts on the network that wish to communicate. Thus, i

f there are N hosts, the number of required keys is [N(N - 1)]/2 . If encryption 

is done at the application level, then a key is needed for every 

pair of users or processes that require communication. Thus, a network may have hu

ndreds of hosts but thousands of users and processes. Figure 14.1 illustrates the 

magnitude of the 

key distribution task for end-to-end encryption.1 A  network using   node-level 



encryption with 1000 nodes would conceivably need to distribute as many as half a 

million keys. If that same network supported 10,000 applications, then as many as 

50 million keys may be required for application-level encryption. 

Returning to our list, option 3 is a possibility for either link encryption or end- to-

end encryption, but if an attacker ever succeeds in gaining access to one key, then 

all subsequent keys will be revealed. Furthermore, the initial distribution of poten- 

tially millions of keys still must be made. 

 

For end-to-end encryption, some 

variation on option 4 has been widely adopted. In this scheme, a key distribution ce

nter is responsible for distributing keys to pairs of users (hosts, processes, 

applications) as needed. Each user must share a 

unique key with the key distribution center for purposes of key distribution. 



The use of a key distribution center is based on the use of a hierarchy of keys. At a 

minimum, two levels of keys are used (Figure 14.2). Communication between 

end systems is encrypted using a temporary key, often referred to as a session key. 

Typically, the session key is used for the duration of a logical connection, such as a 

frame relay connection or transport connection, and then discarded. Each session 

key is obtained from the key distribution center over the same networking facilities 

used for end-user communication. Accordingly, session 

keys are transmitted in encrypted form, using a master key that is shared by the key

 distribution center and an end system or user. 

For each end system or user, there is a unique master key that it shares with 

the key distribution center. Of course, these master keys must be distributed in some 

fashion. However, the scale of the problem is vastly reduced. If there are N entities 

that wish to communicate in pairs, then, as was mentioned, as many as [N(N - 1)]/2 

session keys are needed at any one time. However, only N master keys are required, 

one for each entity. Thus, master keys can be distributed in some noncryptographic 

way, such as physical delivery. 

 

A Key  Distribution Scenario 

The key distribution concept can be deployed in a number of ways. A typical sce- 

nario is illustrated in Figure 14.3, which is based on a figure in [POPE79]. The sce- 

nario assumes that each user shares a unique master key with the key distribution 

center (KDC). 



 

Let us assume that user A wishes to establish a logical connection with B and 

requires a one-time session key to protect the data transmitted over the connection. 

A has a master key, Ka, known only to itself and the KDC; similarly, B shares the 

master key Kb with the KDC. The following steps occur. 

1.                                       A issues a request to the KDC for a session key to protect a logical con

nection 

to B. The message includes the identity of A and B and a unique identifier, N1, for 

this transaction, which we refer to as a nonce. The nonce may be a time- 

stamp, a counter, or a random number; the minimum requirement is that it dif- 

fers with each request. Also, to prevent masquerade, it should be difficult for 

an opponent to guess the nonce. Thus, a random number is a good choice for a 

nonce. 

2.                                       The KDC responds with a message encrypted using Ka. Thus, A is the o

nly one who can successfully read the message, and A knows that it originated at th

e KDC. The message includes two items intended for A: 

•                                      The one-time session key, Ks, to be used for the session 

•                                      The original request message, including the nonce, to enable A to matc

h this response with the appropriate request 



Thus, A can verify that its original request was not altered before reception by 

the KDC and, because of the nonce, that this is not a replay of some previous 

request. 

In addition, the message includes two items intended for B: 

•                                      The one-time session key, Ks, to be used for the session 

•                                      An identifier of A (e.g., its network address), IDA 

These last two items are encrypted with Kb (the master key that the KDC shares with 

B).They are to be sent to B to establish the connection and prove A’s identity. 

3.                                       A stores the session key for use in the upcoming session and forwards t

o B the information that originated at the KDC 

for B, namely, E(Kb,[Ks || IDA]). Because this information is encrypted with Kb, it is 

protected from eavesdrop- 

ping. B now knows the session key (Ks), knows that the other party is A (from IDA), 

and knows that the information originated at the KDC (because it is encrypted 

using Kb). 

At this point, a session key has been securely delivered to A and B, and they may 

begin their protected exchange. However, two additional steps are desirable: 

4.                                       Using the newly minted session key for encryption, B sends a nonce, N

2, to A. 

5.                                       Also, using Ks, A responds with f(N2) , where f is a function that perform

s some transformation on N2 (e.g., adding one). 

These steps assure B that the original message it received (step 3) was not a replay.  

Note that the actual key distribution involves only steps 1 through 3, but that 

steps 4 and 5, as well as step 3, perform an authentication function. 

  

Hierarchical Key Control 

It is not necessary to limit the key distribution function to a single KDC. Indeed, for 

very large networks, it may not be practical to do so. As an alternative, a hierarchy of 

KDCs can be established. For example, there can be local KDCs, each responsible 

for a small domain of the overall internetwork, such as a single LAN or a single 

building. For communication among entities within the same local domain, the local 

KDC is responsible for key distribution. If two entities in different domains desire a 

shared key, then the corresponding local KDCs can communicate through a global 

KDC. In this case, any one of the three KDCs involved can actually select the key. 



The hierarchical concept can be extended to three or even more layers, depending 

on the size of the user population and the geographic scope of the internetwork. 

A hierarchical scheme minimizes the effort involved in master key distribu- 

tion, because most master keys are those shared by a local KDC with its local enti-

 ties. Furthermore, such a scheme limits the damage of a faulty or subverted KDC to 

its local area only. 

  

Session Key Lifetime 

The more frequently session keys are exchanged, the more secure they are, because 

the opponent has less ciphertext to work with for any given 

session key. On the other hand, the distribution of session keys delays the start of 

any exchange and 

places a burden on network capacity. A security manager must try to balance these 

competing considerations in determining the lifetime of a particular session key. 

For connection-oriented protocols, one obvious choice is to use the same ses- 

sion key for the length of time that the connection is open, using a new session key 

for each new session. If a logical connection has a very long lifetime, then it would 

be prudent to change the session key periodically, perhaps every 

time the PDU (protocol data unit) sequence number cycles. 

For a connectionless protocol, such as a transaction-oriented protocol, there is no 

explicit connection initiation or termination. Thus, it is not obvious how often 

one needs to change the session key. The most secure approach is to use a new ses- 

sion key for each exchange. However, this negates one of the principal benefits of 

connectionless protocols, which is minimum overhead and delay for each transac- 

tion. A better strategy is to use a given session key for a certain fixed period only or 

for a certain number of transactions. 

  

A Transparent Key Control  Scheme 

The approach suggested in Figure 14.3 has many variations, 

one of which is described in this subsection. The scheme (Figure 14.4) is useful for pr

oviding end-to- 

end encryption at a network or transport level in a way that is transparent to the end 

users. The approach assumes that communication makes use of a connection-ori- 

ented end-to-end protocol, such as TCP. The noteworthy element of this approach is 

a session security module (SSM), which may consist of functionality at one protocol 



layer, that performs end-to-end encryption and obtains session keys on behalf of its 

host or terminal. 

 

The steps 

involved in establishing a connection are shown in Figure 14.4. When one host wi

shes to set up a connection to another host, it transmits a connec- tion-

request packet (step 1). The SSM saves that packet and applies to the KDC for 

permission to establish the connection (step 2). The communication between the 

SSM and the KDC is encrypted using a master key shared only by this SSM and the 

KDC. If the KDC approves the connection request, it generates the session key and 

delivers it to the two appropriate SSMs, using a unique permanent key for each SSM 

(step 3). The requesting SSM can now release the connection request packet, and a 

connection is set up between the two end systems (step 4). All user data exchanged 

between the two end systems are encrypted by their respective SSMs using the one- 

time session key. 



The automated key distribution approach provides the flexibility and dynamic 

characteristics needed to allow a number of terminal users to access a number of 

hosts and for the hosts to exchange data with each other. 

  

Decentralized Key Control 

The use of a key distribution center imposes the requirement that the 

KDC be trusted and be protected from subversion. This requirement can be 

avoided if key 

distribution is fully decentralized. Although full decentralization is not practical for 

larger networks using symmetric encryption only, it may be useful within a local 

context. 

A decentralized approach requires that each end system be able to communi- cate 

in a secure manner with all potential partner end systems for purposes of ses- sion 

key distribution. Thus, there may need to be as many as [n(n - 1)]/2 master 

keys for a configuration with n end systems. 

A session key may be established with the following sequence of steps (Figure 

14.5). 

1.                                       A issues a request to B for a session key and includes a nonce, N1. 

2.                                       B responds with a message that is encrypted using the shared master k

ey. The 

response includes the session key selected by B, an identifier of B, the value f(N1), and a

nother nonce, N2. 

3.                                       Using the new session key, A returns f(N2) to B. 

 



Thus, although each node must maintain at most (n - 1) master keys, as many 

session keys as required may be generated and used. Because the messages trans- 

ferred using the master key are short, cryptanalysis is difficult. As before, session 

keys are used for only a limited time to protect them. 

  

Controlling Key Usage 

The concept of a key hierarchy and the 

use of automated key distribution techniques greatly reduce the number of keys 

that must be manually managed and distributed. It also may be desirable to impose 

some control on the way in which 

automatically distributed keys are used. For example, in addition to separating mas- 

ter keys from session keys, we may wish to define different types of session keys on 

the basis of use, such as 

•                           Data-encrypting key, for general communication across a network 

•                           PIN-encrypting key, for personal identification numbers (PINs) used 

in elec- tronic funds transfer and point-of-sale applications 

•                           File-encrypting key, for encrypting files stored in publicly 

accessible   locations 

To illustrate the value of separating keys by type, consider the risk that a master 

key is imported as a data-encrypting key into a device. Normally, the mas- ter key 

is physically secured within the cryptographic hardware of the key distrib- ution 

center and of the end systems. Session keys encrypted with this master key are 

available to application programs, as are the data encrypted with such session 

keys. However, if a master key is treated as a session key, it may be possible for an 

unauthorized application to obtain plaintext of session keys encrypted with that 

master key. 

Thus, it may be desirable to institute controls in systems that limit the ways in 

which keys are used, based on characteristics associated with those keys. One simple 

plan is to associate a tag with each key ([JONE82]; see also [DAVI89]). The pro- 

posed technique is for use with DES and makes use of the extra 8 bits in each 64-bit 

DES key. That is, the eight non-key bits ordinarily reserved for parity checking form 

the key tag. The bits have the following interpretation: 

•                           One bit indicates whether the key is a session key or a master key. 

•                           One bit indicates whether the key can be used for encryption. 

•                           One bit indicates whether the key can be used for decryption. 



•                           The remaining bits are spares for future use. 

Because the tag is embedded in the key, it is encrypted along with the key when that 

key is distributed, thus providing protection. The drawbacks of this scheme are 

1.                                       The tag length is limited to 8 bits, limiting its flexibility 

and  functionality. 

2.                                       Because the tag is not transmitted in clear form, it can be used only 

at the point of decryption, limiting the ways in which key use can be controlled. 

A more flexible scheme, referred to 

as the control vector, is described in [MATY91a and b]. In this scheme, each sessio

n key has an associated control vector 

 

consisting of a number of fields that specify the uses and restrictions for that session 

key. The length of the control vector may vary. 

The control vector is cryptographically coupled with the key at the time of key 

generation at the KDC. The coupling and decoupling processes are illustrated in 

Figure 14.6. As a first step, the control vector is passed through a hash function 



that produces a value whose length is equal to the encryption key length. Hash 

functions are discussed in detail in Chapter 11. In essence, a hash function maps 

values from a larger range into a smaller range with a reasonably uniform 

spread. Thus, for example, if numbers in the range 1 to 100 are hashed into numbers

 in the range 1 to 10, approximately 10% of the source values should map into each 

of the target values. 

The hash value is then XORed with the master key to produce an output that is 

used as the key input for encrypting the session key. Thus, 

Hash value = H = h(CV) 

Key input = Km Ⓧ H 

Ciphertext = E([Km Ⓧ H], Ks) 

where Km is the master key and Ks is the session key. The session key is recovered in 

plaintext by the reverse operation: 

D([Km Ⓧ H], E([Km Ⓧ H], Ks)) 

When a session key is delivered to a user from the KDC, it is accompanied by the 

control vector in clear form. The session key can be recovered only by using both 

the master key that the user shares with the KDC and the control vector. Thus, the 

linkage between the session key and its control vector is maintained. 

Use of the control vector has two advantages over use of an 8-bit tag. First, 

there is no restriction on length of the control vector, which enables arbitrarily com- 

plex controls to be imposed on key use. Second, the control vector is available in 

clear form at all stages of operation. Thus, control of key use can be exercised 

in multiple locations. 

 

 



 

For end-to-end encryption, some 

variation on option 4 has been widely adopted. In this scheme, a key distribution ce

nter is responsible for distributing keys to pairs of users (hosts, processes, 

applications) as needed. Each user must share a 

unique key with the key distribution center for purposes of key distribution. 

The use of a key distribution center is based on the use of a hierarchy of keys. At a 

minimum, two levels of keys are used (Figure 14.2). Communication between 

end systems is encrypted using a temporary key, often referred to as a session key. 

Typically, the session key is used for the duration of a logical connection, such as a 

frame relay connection or transport connection, and then discarded. Each session 

key is obtained from the key distribution center over the same networking facilities 

used for end-user communication. Accordingly, session 



keys are transmitted in encrypted form, using a master key that is shared by the key

 distribution center and an end system or user. 

For each end system or user, there is a unique master key that it shares with 

the key distribution center. Of course, these master keys must be distributed in some 

fashion. However, the scale of the problem is vastly reduced. If there are N entities 

that wish to communicate in pairs, then, as was mentioned, as many as [N(N - 1)]/2 

session keys are needed at any one time. However, only N master keys are required, 

one for each entity. Thus, master keys can be distributed in some noncryptographic 

way, such as physical delivery. 

 

A Key  Distribution Scenario 

The key distribution concept can be deployed in a number of ways. A typical sce- 

nario is illustrated in Figure 14.3, which is based on a figure in [POPE79]. The sce- 

nario assumes that each user shares a unique master key with the key distribution 

center (KDC). 



 

Let us assume that user A wishes to establish a logical connection with B and 

requires a one-time session key to protect the data transmitted over the connection. 

A has a master key, Ka, known only to itself and the KDC; similarly, B shares the 

master key Kb with the KDC. The following steps occur. 

1.                                       A issues a request to the KDC for a session key to protect a logical con

nection 

to B. The message includes the identity of A and B and a unique identifier, N1, for 

this transaction, which we refer to as a nonce. The nonce may be a time- 

stamp, a counter, or a random number; the minimum requirement is that it dif- 

fers with each request. Also, to prevent masquerade, it should be difficult for 

an opponent to guess the nonce. Thus, a random number is a good choice for a 

nonce. 

2.                                       The KDC responds with a message encrypted using Ka. Thus, A is the o

nly one who can successfully read the message, and A knows that it originated at th

e KDC. The message includes two items intended for A: 

•                                      The one-time session key, Ks, to be used for the session 

•                                      The original request message, including the nonce, to enable A to matc

h this response with the appropriate request 



Thus, A can verify that its original request was not altered before reception by 

the KDC and, because of the nonce, that this is not a replay of some previous 

request. 

In addition, the message includes two items intended for B: 

•                                      The one-time session key, Ks, to be used for the session 

•                                      An identifier of A (e.g., its network address), IDA 

These last two items are encrypted with Kb (the master key that the KDC shares with 

B).They are to be sent to B to establish the connection and prove A’s identity. 

3.                                       A stores the session key for use in the upcoming session and forwards t

o B the information that originated at the KDC 

for B, namely, E(Kb,[Ks || IDA]). Because this information is encrypted with Kb, it is 

protected from eavesdrop- 

ping. B now knows the session key (Ks), knows that the other party is A (from IDA), 

and knows that the information originated at the KDC (because it is encrypted 

using Kb). 

At this point, a session key has been securely delivered to A and B, and they may 

begin their protected exchange. However, two additional steps are desirable: 

4.                                       Using the newly minted session key for encryption, B sends a nonce, N

2, to A. 

5.                                       Also, using Ks, A responds with f(N2) , where f is a function that perform

s some transformation on N2 (e.g., adding one). 

These steps assure B that the original message it received (step 3) was not a replay.  

Note that the actual key distribution involves only steps 1 through 3, but that 

steps 4 and 5, as well as step 3, perform an authentication function. 

  

Hierarchical Key Control 

It is not necessary to limit the key distribution function to a single KDC. Indeed, for 

very large networks, it may not be practical to do so. As an alternative, a hierarchy of 

KDCs can be established. For example, there can be local KDCs, each responsible 

for a small domain of the overall internetwork, such as a single LAN or a single 

building. For communication among entities within the same local domain, the local 

KDC is responsible for key distribution. If two entities in different domains desire a 

shared key, then the corresponding local KDCs can communicate through a global 

KDC. In this case, any one of the three KDCs involved can actually select the key. 



The hierarchical concept can be extended to three or even more layers, depending 

on the size of the user population and the geographic scope of the internetwork. 

A hierarchical scheme minimizes the effort involved in master key distribu- 

tion, because most master keys are those shared by a local KDC with its local enti-

 ties. Furthermore, such a scheme limits the damage of a faulty or subverted KDC to 

its local area only. 

  

Session Key Lifetime 

The more frequently session keys are exchanged, the more secure they are, because 

the opponent has less ciphertext to work with for any given 

session key. On the other hand, the distribution of session keys delays the start of 

any exchange and 

places a burden on network capacity. A security manager must try to balance these 

competing considerations in determining the lifetime of a particular session key. 

For connection-oriented protocols, one obvious choice is to use the same ses- 

sion key for the length of time that the connection is open, using a new session key 

for each new session. If a logical connection has a very long lifetime, then it would 

be prudent to change the session key periodically, perhaps every 

time the PDU (protocol data unit) sequence number cycles. 

For a connectionless protocol, such as a transaction-oriented protocol, there is no 

explicit connection initiation or termination. Thus, it is not obvious how often 

one needs to change the session key. The most secure approach is to use a new ses- 

sion key for each exchange. However, this negates one of the principal benefits of 

connectionless protocols, which is minimum overhead and delay for each transac- 

tion. A better strategy is to use a given session key for a certain fixed period only or 

for a certain number of transactions. 

  

A Transparent Key Control  Scheme 

The approach suggested in Figure 14.3 has many variations, 

one of which is described in this subsection. The scheme (Figure 14.4) is useful for pr

oviding end-to- 

end encryption at a network or transport level in a way that is transparent to the end 

users. The approach assumes that communication makes use of a connection-ori- 

ented end-to-end protocol, such as TCP. The noteworthy element of this approach is 

a session security module (SSM), which may consist of functionality at one protocol 



layer, that performs end-to-end encryption and obtains session keys on behalf of its 

host or terminal. 

 

The steps 

involved in establishing a connection are shown in Figure 14.4. When one host wi

shes to set up a connection to another host, it transmits a connec- tion-

request packet (step 1). The SSM saves that packet and applies to the KDC for 

permission to establish the connection (step 2). The communication between the 

SSM and the KDC is encrypted using a master key shared only by this SSM and the 

KDC. If the KDC approves the connection request, it generates the session key and 

delivers it to the two appropriate SSMs, using a unique permanent key for each SSM 

(step 3). The requesting SSM can now release the connection request packet, and a 

connection is set up between the two end systems (step 4). All user data exchanged 

between the two end systems are encrypted by their respective SSMs using the one- 

time session key. 

The automated key distribution approach provides the flexibility and dynamic 

characteristics needed to allow a number of terminal users to access a number of 

hosts and for the hosts to exchange data with each other. 

  

Decentralized Key Control 



The use of a key distribution center imposes the requirement that the 

KDC be trusted and be protected from subversion. This requirement can be 

avoided if key 

distribution is fully decentralized. Although full decentralization is not practical for 

larger networks using symmetric encryption only, it may be useful within a local 

context. 

A decentralized approach requires that each end system be able to communi- cate 

in a secure manner with all potential partner end systems for purposes of ses- sion 

key distribution. Thus, there may need to be as many as [n(n - 1)]/2 master 

keys for a configuration with n end systems. 

A session key may be established with the following sequence of steps (Figure 

14.5). 

1.                                       A issues a request to B for a session key and includes a nonce, N1. 

2.                                       B responds with a message that is encrypted using the shared master k

ey. The 

response includes the session key selected by B, an identifier of B, the value f(N1), and a

nother nonce, N2. 

3.                                       Using the new session key, A returns f(N2) to B. 

 

Thus, although each node must maintain at most (n - 1) master keys, as many 

session keys as required may be generated and used. Because the messages trans- 

ferred using the master key are short, cryptanalysis is difficult. As before, session 

keys are used for only a limited time to protect them. 

  

Controlling Key Usage 



The concept of a key hierarchy and the 

use of automated key distribution techniques greatly reduce the number of keys 

that must be manually managed and distributed. It also may be desirable to impose 

some control on the way in which 

automatically distributed keys are used. For example, in addition to separating mas- 

ter keys from session keys, we may wish to define different types of session keys on 

the basis of use, such as 

•                           Data-encrypting key, for general communication across a network 

•                           PIN-encrypting key, for personal identification numbers (PINs) used 

in elec- tronic funds transfer and point-of-sale applications 

•                           File-encrypting key, for encrypting files stored in publicly 

accessible   locations 

To illustrate the value of separating keys by type, consider the risk that a master 

key is imported as a data-encrypting key into a device. Normally, the mas- ter key 

is physically secured within the cryptographic hardware of the key distrib- ution 

center and of the end systems. Session keys encrypted with this master key are 

available to application programs, as are the data encrypted with such session 

keys. However, if a master key is treated as a session key, it may be possible for an 

unauthorized application to obtain plaintext of session keys encrypted with that 

master key. 

Thus, it may be desirable to institute controls in systems that limit the ways in 

which keys are used, based on characteristics associated with those keys. One simple 

plan is to associate a tag with each key ([JONE82]; see also [DAVI89]). The pro- 

posed technique is for use with DES and makes use of the extra 8 bits in each 64-bit 

DES key. That is, the eight non-key bits ordinarily reserved for parity checking form 

the key tag. The bits have the following interpretation: 

•                           One bit indicates whether the key is a session key or a master key. 

•                           One bit indicates whether the key can be used for encryption. 

•                           One bit indicates whether the key can be used for decryption. 

•                           The remaining bits are spares for future use. 

Because the tag is embedded in the key, it is encrypted along with the key when that 

key is distributed, thus providing protection. The drawbacks of this scheme are 

1.                                       The tag length is limited to 8 bits, limiting its flexibility 

and  functionality. 

2.                                       Because the tag is not transmitted in clear form, it can be used only 

at the point of decryption, limiting the ways in which key use can be controlled. 



A more flexible scheme, referred to 

as the control vector, is described in [MATY91a and b]. In this scheme, each sessio

n key has an associated control vector 

 

consisting of a number of fields that specify the uses and restrictions for that session 

key. The length of the control vector may vary. 

The control vector is cryptographically coupled with the key at the time of key 

generation at the KDC. The coupling and decoupling processes are illustrated in 

Figure 14.6. As a first step, the control vector is passed through a hash function 

that produces a value whose length is equal to the encryption key length. Hash 

functions are discussed in detail in Chapter 11. In essence, a hash function maps 

values from a larger range into a smaller range with a reasonably uniform 

spread. Thus, for example, if numbers in the range 1 to 100 are hashed into numbers

 in the range 1 to 10, approximately 10% of the source values should map into each 

of the target values. 



The hash value is then XORed with the master key to produce an output that is 

used as the key input for encrypting the session key. Thus, 

Hash value = H = h(CV) 

Key input = Km Ⓧ H 

Ciphertext = E([Km Ⓧ H], Ks) 

where Km is the master key and Ks is the session key. The session key is recovered in 

plaintext by the reverse operation: 

D([Km Ⓧ H], E([Km Ⓧ H], Ks)) 

When a session key is delivered to a user from the KDC, it is accompanied by the 

control vector in clear form. The session key can be recovered only by using both 

the master key that the user shares with the KDC and the control vector. Thus, the 

linkage between the session key and its control vector is maintained. 

Use of the control vector has two advantages over use of an 8-bit tag. First, 

there is no restriction on length of the control vector, which enables arbitrarily com- 

plex controls to be imposed on key use. Second, the control vector is available in 

clear form at all stages of operation. Thus, control of key use can be exercised 

in multiple locations. 

 

 

SYMMETRIC KEY DISTRIBUTION USING 

ASYMMETRIC ENCRYPTION 

  

Because of the inefficiency of public key cryptosystems, they are almost never 

used for the direct encryption of sizable block of data, but are limited to relatively 

small blocks. One of the most important uses of a public-key cryptosystem is to 

encrypt secret keys for distribution. We see many specific examples of this in 

Part Five. Here, we discuss general principles and typical  approaches. 

  

Simple Secret Key  Distribution 



An extremely simple scheme was put forward by Merkle [MERK79], as illustrated 

in Figure 14.7. If A wishes to communicate with B, the following 

procedure is employed: 

1.                                       A generates a public/private key pair {PUa, PRa} and transmits a messa

ge to B consisting of PUa and an identifier of A, IDA. 

2.                                       B generates a secret key, Ks, and transmits it to A, which is encrypted 

with A’s public key. 

3.                                       A computes D(PRa, E(PUa, Ks)) to recover the secret key. Because only

 A can decrypt the message, only A and B will know the identity of Ks. 

4.                                       A discards PUa and PRa and B discards PUa. 

A and B can now securely communicate using conventional encryption and the 

session key Ks. At the completion of the exchange, both A and B discard   Ks. 

 

Despite its simplicity, this is an attractive protocol. No keys exist before the start of 

the communication and none exist after the completion of communication. Thus, the 

risk of compromise of the keys is minimal. At the same time, the communication is 

secure from eavesdropping. 

The protocol depicted in Figure 14.7 is insecure against an adversary who can interc

ept messages and then either relay the intercepted 

message or substitute another message (see Figure 1.3c). Such an attack is known as 

a man-in-the-middle 

attack [RIVE84]. In this case, if an adversary, E, has control of the intervening com- 

munication channel, then E can compromise the communication in the following 

fashion without being detected. 

1.                                       A generates a public/private key pair {PUa, PRa} 

and transmits a message intended for B consisting of PUa and an identifier of A, ID

A. 

2.                                       E intercepts the message, creates its 

own public/private key pair {PUe, PRe} and transmits PUe || IDA  to B. 



3.                                       B generates a secret key, Ks, and transmits E(PUe, Ks) . 

4.                                       E intercepts the message and learns Ks by computing D(PRe, E(PUe, Ks)

). 

5.                                       E transmits E(PUa, Ks) to A. 

The result is that both A and B know Ks and are unaware that Ks has also been 

revealed to E. A and B can now exchange messages using Ks. E no longer actively 

interferes with the communications channel but simply eavesdrops. Knowing Ks, 

E can decrypt all messages, and both A and B 

are unaware of the problem. Thus, this simple protocol is only useful in an environm

ent where the only threat is eavesdropping. 

  

Secret Key Distribution with Confidentiality and Authentication 

Figure 14.8, based on an approach suggested in [NEED78], 

provides protection against both active and passive attacks. We begin at a point whe

n it is assumed that 

A and B have exchanged public keys by one of the schemes described subsequently 

in this chapter. Then the following steps occur. 

 

  

1.                                       A uses B’s public key to encrypt a message to B containing an 

identifier  of A(IDA) and a nonce (N1), which is used to identify this transaction 

uniquely. 



B sends a message to A encrypted with PUa and containing A’s nonce (N1) as ell as  

a  new nonce generated by B (N2). Because  only  B  could have (N2). Because  

only  B  could have decrypted message (1), the presence of N1 in message (2) 

assures A that the correspondent is B. 

2.                                       A returns N2, encrypted using B’s public key, to assure B that its corresp

ondent is A. 

A selects a secret key Ks and sends M = E(PUb, E(PRa, Ks)) to B. Encryption of this 

message with B’s public key ensures that only B can read it; encryption 

with A’s private key ensures that only A could have sent it. 

3.                                       B computes D(PUa, D(PRb, M)) to recover the secret key. 

4.                                       The result is that this scheme ensures both confidentiality 
and authentication in the exchange of a secret key. 

  

A Hybrid Scheme 

Yet another way to use public-key encryption to distribute secret keys is a hybrid 

approach in use on IBM mainframes [LE93]. This scheme retains the use of a 

key distribution center (KDC) that shares a secret master key with each 

user and distributes secret session keys encrypted with the master key. A public key s

cheme is 

used to distribute the master keys. The following rationale is provided for using this 

three-level approach: 

•                           Performance: There are many applications, especially transaction-

oriented applications, in which the session keys change frequently. Distribution of s

es- sion keys by public-key encryption could degrade overall system performance 

because of the relatively high computational load of public-key encryption and 

decryption. With a three-level hierarchy, public-key encryption is used 

only occasionally to update the master key between a user and the KDC. 

•                           Backward compatibility: The hybrid scheme is easily overlaid on an 

existing KDC scheme with minimal disruption or software  changes. 

The addition of a public-key layer provides a secure, efficient means of distrib- uting 

master keys. This is an advantage in a configuration in which a single KDC 

serves a widely distributed set of users. 

 

 

 



 

 

 

 

DISTRIBUTION OF PUBLIC KEYS 

Several techniques have been proposed for the distribution of public keys. Virtually 

all these proposals can be grouped into the following general schemes: 

•                           Public announcement 

•                           Publicly available directory 

•                           Public-key authority 

•                           Public-key certificates 

 
 

 

Public Announcement of Public Keys 

On the face of it, the point of public-

key encryption is that the public key is public. Thus, if there is some broadly accepte

d public-key algorithm, such as RSA, any par- 

ticipant can send his or her public key to any other participant or broadcast the key 

to the community at large (Figure 14.9). For example, because of the growing pop- 

ularity of PGP (pretty good privacy, discussed in Chapter 18), which makes use of 

RSA, many PGP users have adopted the practice of appending their public key 



to messages that they send to public forums, such as USENET 

newsgroups and Internet mailing lists. 

Although this approach is convenient, it has a major weakness. Anyone can forge 

such a public announcement. That is, some user could pretend to be user A and 

send a public key to another participant or broadcast such a public key. Until 

such time as user A discovers the forgery and alerts other participants, the forger is 

able to read all encrypted messages intended for A and can use the forged keys for 

authentication (see Figure 9.3). 

  

Publicly Available Directory 

A greater degree of security can be achieved by maintaining a publicly available 

dynamic directory of public keys. Maintenance and distribution of the public direc-

 tory would have to be the responsibility of some trusted 

entity or organization (Figure 14.10). Such a scheme would include the following el

ements: 

1.                        The authority maintains a directory with a {name, public key} entry 

for each participant. 

2.                        Each participant registers a public key with the directory authority. 

Registration would have to be in person or by some form of secure authenti- 

cated communication. 

3.                        A participant may replace the existing key with a new one at any time, eith

er because of the desire to replace a public key that has already been used for 

a large amount of data, or because the corresponding private key has been com- 

promised in some way. 



  

4.                                       Participants could also access the directory electronically. For this 

purpose, secure, authenticated communication from the authority to the participant 

is mandatory. 

This scheme is clearly more secure than individual public announcements but still h

as vulnerabilities. If an adversary succeeds in obtaining or computing the private 

key of the directory authority, the adversary could authoritatively pass out 

counterfeit public keys and subsequently impersonate any participant and eaves- 

drop on messages sent to any participant. Another way to achieve the same end is 

for the adversary to tamper with the records kept by the authority. 

  

Public-Key Authority 

Stronger security for public-key distribution can be achieved by providing tighter 

control over the distribution of public keys from the directory. A typical scenario is 

illustrated in Figure 14.11, which is based on a figure in [POPE79]. As before, the 

scenario assumes that a central authority maintains a dynamic directory of public 

keys of all participants. In addition, each participant reliably knows a public key for 

the authority, with only the authority knowing the corresponding 

private key. The following steps (matched by number to Figure 14.11) occur. 

1.                                       A sends a timestamped message to the public-key authority 

containing a request for the current public key of B. 

2.                                       The authority responds with a message that is encrypted using the authori

ty’s pri- 



vate key, PRauth.Thus,A is able to decrypt the message using the authority’s pub-

 lic key.Therefore,A is assured that the message originated with the authority.The mess

age includes the following: 

•                                 B’s public key, PUb, which A can use to encrypt messages destined 

for  B 

•                                 The original request used to enable A to match this response with the 

cor- responding earlier request and to verify that the original request was not 

altered before reception by the authority 

 

  

•                               The original timestamp given so A can determine that 

this is not an old mes-

 sage from the authority containing a key other than B’s current public key 

3.                                     A stores B’s public key and also uses it to encrypt a message to B contai

ning an 

identifier of A (IDA) and a nonce (N1), which is used to identify this transaction uniqu

ely. 

4, 5. B retrieves A’s public key from the authority in the same manner as A 

retrieved B’s public key. 



At this point, public keys have been securely delivered to A and B, and they may 

begin their protected exchange. However, two additional steps are desirable: 

6.       B sends a message to A encrypted with PUa and containing A’s nonce (N1) 

as well as  a  new  nonce generated  by B (N2). Because  only  B  could have 

decrypted message (3), the presence of N1 in message (6) assures A that the 

correspondent is B. 

6.                                     A returns N2, which is encrypted using B’s public key, to assure B that i

ts cor- respondent is A. 

Thus, a total of seven messages are required. However, the initial four mes- sages 

need be used only infrequently because both A and B can save the other’s 

public key for future use—a technique known as caching. Periodically, a user should 

request fresh copies of the public keys of its correspondents to ensure currency. 

  

Public-Key Certificates 

The scenario of Figure 14.11 is attractive, yet it has some drawbacks. The public-key 

authority could be somewhat of a bottleneck in the system, for a user must appeal to 

the authority for a public key for every other user that it wishes to contact. As 

before, the directory of names and public keys maintained by the authority is vul- 

nerable to tampering. 

An alternative approach, first suggested by Kohnfelder [KOHN78], is 

to use certificates that can be used by participants to exchange keys without contact

ing a public-key authority, in a way that is as reliable as if the keys 

were obtained directly from a public-key authority. In essence, a certificate 

consists of a public key, an identifier of the key owner, and the whole block signed 

by a trusted third party. Typically, the third 

party is a certificate authority, such as a government agency or a financial 

institution, that is trusted by the user community. A user can present his or her 

public key to the authority in a secure manner and obtain a cer- tificate. The user 

can then publish the certificate. Anyone needing this user’s pub- lic key can obtain 

the certificate and verify that it is valid by way of the attached trusted signature. A 

participant can also convey its key information to another 

by transmitting its certificate. Other participants can verify 

that the certificate was created by the authority. We can place the following 

requirements on this scheme: 

1.                                       Any participant can read a certificate to determine the name and public

 key of the certificate’s owner. 



2.                                       Any participant can verify that the certificate originated from the 

certificate authority and is not counterfeit. 

3.                                       Only the certificate authority can create and update certificates. 

These requirements are satisfied by the original proposal in [KOHN78]. Denning 

[DENN83] added the following additional requirement: 

4.                                       Any participant can verify the currency of the certificate. 

A certificate scheme is illustrated in Figure 14.12. Each participant applies to the ce

rtificate authority, supplying a public key and requesting a certificate. 

 

Application must be in person or by some form of secure authenticated communi- 

cation. For participant A, the authority provides a certificate of the form 

CA = E(PRauth, [T || IDA || PUa]) 

where PRauth is the private key used by the authority and T is a timestamp. A may 

then pass this certificate on to any other participant, who reads and verifies the cer- 

tificate as follows: 

D(PUauth, CA)  = D(PUauth, E(PRauth, [T || IDA || PUa]))  = (T || IDA || PUa) 

The recipient uses the authority’s public key, PUauth, to decrypt the certifi- cate. 

Because the certificate is readable only using the authority’s public key, this 

verifies that the certificate came from the certificate authority. The 



elements IDA and PUa provide the recipient with the name and public key of the 

certificate’s holder. The timestamp T validates the currency of the certificate. The 

timestamp 

counters the following scenario. A’s private key is learned by an adversary. A gen- 

erates a new private/public key pair and applies to the certificate authority for a 

new certificate. Meanwhile, the adversary replays the old certificate to B. If B then 

encrypts messages using the compromised old public key, the adversary can read 

those messages. 

In this context, the compromise of a private key is comparable to the loss of a 

credit card. The owner cancels the credit card number but is at risk until all possible 

communicants are aware that the old credit card is obsolete. Thus, the timestamp 

serves as something like an expiration date. If a certificate is sufficiently old, it is 

assumed to be expired. 

One scheme has become universally accepted for formatting public-key cer- 

tificates: the X.509 standard. X.509 certificates are used in most network security 

applications, including IP security, transport layer security (TLS), and S/MIME, all 

of which are discussed in Part Five. X.509 is examined in detail in the next section.  
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