Instruction Codes

A computer instruction is a binary code that specifies a sequence of microoperations for
the computer. Instruction codes together with data are stored in memory. The computer reads
each instruction from memory and places it in a control register. The control then interprets the
binary code of the instruction and proceeds to execute it by issuing a sequence of
microoperations. Every computer has its own unique instruction set. The ability to store and
execute instructions, the stored program concept, is the most important property of a general-
purpose computer. An instruction code is a group of bits that instruct the computer to perform
a specific operation. It is usually divided into parts, each having its own particular
interpretation. The most basic part of an instruction code is its operation part. The operation
code of an instruction is a group of bits that define such operations as add, subtract, multiply,
shift, and complement. The number of bits required for the operation code of an instruction
depends on the total number of operations available in the computer.

The simplest way to organize a computer is to have one processor register and an
instruction code format with two parts. The first part specifies the operation to be performed
and the second specifies an address. The memory address tells the control where to find an
operand in memory. This operand is read from memory and used as the data to be operated on
together with the data stored in the processor register.

For a memory unit with 4096 words we need 12 bits to specify an address since
212= 4096. If we store each instruction code in one 16-bit memory word, we have available
four bits for the operation code (abbreviated opcode) to specify one out of 16 possible
operations, and 12 bits to specify the address of an operand. The control reads a 16-bit
instruction from the program portion of memory. It uses the 12-bit address part of the
instruction to read a 16-bit operand from the data portion of memory. Fig(12) depicts this type
of organization.

Memory
496« 16

-.._.-'-__'I-.______--_-‘_'
15 12 11 0

Opeode Address Instructions
(program)

Instruction format

15 0
- Crperands
Binary operand (dara)

_-""-__.-“"""--._.--

Processor register
Figure 12 Stored program organization. (accumulatar or AC)

Computers that have a single-processor register usually assign to it the name accumulator and
label it AC.

16

For example, operations such as clear AC, complement AC, and increment AC operate on data
stored in the AC register.

When the second part of an instruction immediate code specifies an operand, this type is
called immediate operand. When the second part specifies the address of an operand, the
instruction is said to have a direct address. The third possibility called indirect address,
where the bits in the second part of the instruction designate an address of a memory word in
which the address of the operand is found. One bit of the instruction code can be used to
distinguish between a direct and an indirect address.

As an illustration of this configuration, consider the instruction code format shown in Fig(13).
15 14 12 11 0

ITI Opeode] Address |
(a) Instraction format
Memary Memory
22| o0]abp| as 1|1 [abn| w0
300 1350
457 Operand
1350 Orperand
..--"'_"-ﬁ.“__‘___r_#_
_..Q)
| AC | [AC |
]]
() Darect addness (c) Indirect address

Fig 13 Demonstration of direct and indirect address.

Computer Reqgisters

Computer instructions are normally stored in consecutive memory locations and are
executed sequentially one at a time. The control reads an instruction from a specific address in
memory and executes it. It then continues by reading the next instruction in sequence and
executes it, and so on. This type of instruction sequencing needs a counter to calculate the
address of the next instruction after execution of the current instruction is completed. The
computer needs processor registers for manipulating data and a register for holding a memory
address. These requirements dictate the register configuration are listed in Table(9) and
shown in Fig(14).

17

TABLE 9 List of Replsters for the Basic Computes

Register MNumber

symbol of bits Register name Function
DR 16 Data register Holds memory operand
AR 12 Address register Holds address for memory
AC 16 Accumulator Processor register
IR 16 Instruction register Holds instruction code
PC 12 Program counter Holds address of instruction
TR 16 Temporary register Holds temporary data
INFPR g Input register Holds input character
OUTR B Qutput register Holds ocutput character
1 o
1 0 Memory
G words
16 bits per word
15 i}
| IR | 15 o
E 0 1 Dk !
| TR | 15 o
7 07 (] | AC |
[oue | | mer |

Figure 14 Basic computer registers and memory.

The basic computer has eight registers, a memory unit, and a control unit. The
connection of the registers and memory of the basic computer to a common bus system is
shown in Fig(15).

Two registers, AR and PC, have 12 bits each since they hold a memory address. When
the contents of AR or PC are applied to the 16-bit common bus, the four most significant bits
are set to 0's. When AR or PC receive information from the bus, only the 12 least significant
bits are transferred into the register.

The input register INPR and the output register OUTR have 8 bits each and
communicate with the eight least significant bits in the bus. The INPR receives a character
from an input device which is then transferred to AC. OUTR receives a character from AC and
delivers it to an output device. There is no transfer from OUTR to any of the other registers.
Five registers have three control inputs: LD (load), INR (increment), and CLR (clear).

18

LD INR CLR

Figure 1§ Basic computer registers connected to a common bus.

Computer Instructions

The basic computer has three instruction code formats, as shown in Figure. Each format
has 16 bits.

15 14 12 11 1]

1| Opeode Address (Opeode = 000 through 110
{a) Memory - reference instruction

15 12 11 0

o1 11 Register operation (Opcode =111, I=0)
{b) Register — reference instruction

15 12 11 0

11l 1/0 operation (Opcode =111, f=1)

{c) Input — output instruction
Figure 16 Basic computer instruction formats.

19

The type of instruction is recognized by the computer control from the four bits in
positions 12through 15 of the instruction. If the three opcode bits in positions 12 through 14
are not equal to 111, the instruction is a memory-reference type and the bit in position 15 is
taken as the addressing mode J. If the 3-bit opcode is equal to 111, control then inspects the bit
in position 15. If this bit is 0, the instruction is a register-reference type. If the bit is 1, the
instruction is an input-output type. Note that the bit in position 15 of the instruction code is

designated by the symbol J but is not used as a mode bit when the operation code is equal to
111.

The instructions for the computer are listed in Table(10):
TABLE 10 Basic Computer Instructions

Hexadecimal code

Symbol I=0 [=1 Description

AND Oxxx Bxxx AND memory word to AC
ADD Lxtxx Oxxx Add memory word to AC
LDA Joxx Awxox Load memory word to AC

5TA Ioxx Bxxx Store content of AC in memory
BUN dxxx Cxoxx Branch unconditionally

BSA S Dwxx Branch and save return address
ISZ 6axx Exxx Increment and skip if zero
CLA 7800 Clear AC

CLE 7400 Clear E

CMA 7200 Complement AC

CME 7100 Complement E

CIR T080 Circulate right AC and E

CIL 7040 Circulate left AC and E

INC 7020 Increment AC

5PA 7010 Skip next instruction if AC positive
SNA 7008 Skip next instruction if AC negative
SZA 7004 Skip next instruction if AC zero
SZE T002 Skip next instruction if Eis 0
HLT 7001 Halt computer

INP F800 Input character to AC

ouT F400 Qutput character from AC

SKI F200 Skip on input flag

SKO F100 Skip on output flag

ION FOB0 Interrupt on

I0OF FO40 Interrupt off

The set of instructions are said to be complete if the computer includes a sufficient
number of instructions in each of the following categories:
1. Arithmetic, logical, and shift instructions.
2. Instructions for moving information to and from memory and processor registers.
3. Instructions that check status information to provide decision making capabilities.
4. Input and output instructions.
5. The capability of stopping the computer.

20

Timing and Control

The timing for all registers in the basic computer is controlled by a master clock generator.
The clock pulses are applied to all flip-flops and registers in the system, including the flip-
flops and registers in the control unit. The control signals are generated in the control unit and
provide control inputs for the multiplexers in the common bus, control inputs in processor
registers, and microoperations for the accumulator.

There are two major types of control organization:

1- hardwired control : the control logic is implemented with gates, flip-flops, decoders,
and other digital circuits. It has the advantage that it can be optimized to produce a fast
mode of operation.

2- microprogrammed control: the control information is stored in a control memory. The
control memory is programmed to initiate the required sequence of microoperations.

The block diagram of the control unit is shown in Fig(17):
Instruction register (IR)
[15] w 13 n | 11-0 |

| | Ocher inputs
¥ § |

IxE ‘ Y

3 1
1t 5 .

D,

-]

Coatrol
kgic | ——
gates

Tis

T
4bit - e | pcreenent (INR)
SRS Clear (CLR)
(5C) - Clock

Figure 17 Control unit of basic computer.

SC is incremented with every positive clock transition, unless its CLR input is active.
This produces the sequence of timing signals Ty, Ty, T,, T3, T4, and so on, as shown in the
diagram. (Note the relationship between the timing signal and its corresponding positive

21

clock transition.) If SC is not cleared, the timing signals will continue with Ts, T, up to Tis
and back to To.

As an example, consider the case where SC is incremented to provide timing signals Ty, Ty
T,, T3, and T4 in sequence. At time T4, SC is cleared to O if decoder output D3 is active. This
Is expressed symbolically by the statement

DsT,:SC < 0
Ta T T Ty Ta Ta ;
e 1 J1 L FL 1 L 1

o

§ \

i r'

———

T

Ta

(

—t

oy

cﬂ W

Example of contol tming signals.

Instruction Cycle

A program residing in the memory unit of the computer consists of a sequence of
instructions. The program is executed in the computer by going through a cycle for each
instruction. In the basic computer each instruction cycle consists of the following phases:
1. Fetch an instruction from memory.
2. Decode the instruction.
3. Read the effective address from memory if the instruction has an indirect address.
4. Execute the instruction.
This process continues indefinitely unless a HALT instruction is encountered. Initially, the
program counter PC is loaded with the address of the first instruction in the program. The
sequence counter SC is cleared to 0, providing a decoded timing signal To. After each clock
pulse, SC is incremented by one, so that the timing signals go through a sequence To, Ty, To,
and so on. The microoperations for the fetch and decode phases can be specified by the
following register transfer statements.

Ty: AR < PC
T,:IR < M[AR],PC = PC + 1
T,:Dy,,,,D; < Decode IR(12 — 14),AR < IR(0 — 11),I « IR(15)

22

It is necessary to use timing signal T to provide the following connections in the bus system.

1. Enable the read input of memory.

2. Place the content of memory onto the bus by making S,S:Sp =111.
3. Transfer the content of the bus to IR by enabling the LD input of IR.
4. Increment PC by enabling the INR input of PC.

Memory - Reference Instructions

The table(11) lists the seven memory-reference instructions. The decoded output D, for
1 =01, 2, 3, 4,5, and 6 from the operation decoder that belongs effective address to each
instruction is included in the table. The effective address of the instruction is in the address
register AR and was placed there during timing signal T, when | = 0, or during timing signal
T3 when I=1. The symbolic description of each instruction is specified in the table in terms of
register transfer notation. The actual execution of the instruction in the bus system will require
a sequence of microoperations.

TABLE 11 Memory-Reference Instructions

Operation
Symbol df:odcr Symbolic description Means
AND Dq AC+—AC A MIAR] AND to AC
ADD D, AC—AC + M[AR], E Cos ADD to AC
LDA D, AC «—MAR] LOAD to AC
STA Dy M[AR]+—AC STORE AC
BUN Dy PC+—AR Branch Unconditional
BSA Ds M[AR])«—PC, PC+AR +1 Branch and save address
ISZ Dy M[AR] —MI[AR] + 1, Increment and skip if 0

If M[AR] + 1 = 0 then PC+—PC + 1

Input - Output and Interrupt

A computer can serve no useful purpose unless it communicates with the external
environment. Instructions and data stored in memory must come from some input device. The
input-output configuration is shown in Fig(18). The transmitter interface receives serial
information from the keyboard and transmits it to INPR. The receiver interface receives
information from OUTR and sends it to the printer serially. The 1-bit input flag FGI is a
control flip-flop. The flag bit is set to 1 when new information is available in the input device
and is cleared to 0 when the information is accepted by the computer. The output register
OUTR works similarly but the direction of information flow is reversed. Initially, the output
flag FGO is set to 1. The computer checks the flag bit; if it is 1, the information from AC is
transferred in parallel to OUTR and FGO is cleared to 0.

23

Serial Computer

Input — output communication registers and
terminal interface flip-flops
FGO
. Recel

Frinter -t i:l:ff:s: o OUTR
AC

~ Transmitier T
Keyboard =~ interface = ineR

FGI

Figure 18§ Input-ourpur configuration.

Input and output instructions are needed for transferring information to and from AC
register, for checking the flag bits, and for controlling the interrupt facility. Input-output
instructions have an operation code 1111 and are recognized by the control when D7 =1 and |
= 1. The remaining bits of the instruction specify the particular operation. The control
functions and microoperations for the input-output instructions are listed in Table(12). These
instructions are executed with the clock transition associated with timing signal Ts.

TABLE 12 Input-Crutpur Instructions

DIT; = p (commoen to all input-output instructions)
IR(i) = B; [bit in IR(6-11) that specifies the instruction)

p: SC+0 Clear SC
INP pBu: AC(0-7)+INFR, FGI+0 Input character
OUT pBw: OUTR+<AC(0-T), FGO+«0 Output character

SKI pBs: If (FGI = 1) then (PC+—PC + 1) Skip on input flag

SKO pBg If(FGO = 1) then (PC+PC + 1) Skip on output flag
[ON pBx. IEN <1 Interrupt enable on
I0F pBs: IEN <0 [nterrupt enable off

Consider a computer that can go through an instruction cycle in 1jus. Assume that the
input-output device can transfer information at a maximum rate of 10 characters per second.
This is equivalent to one character every 100,000us. Two instructions are executed when the
computer checks the flag bit and decides not to transfer the information. This means that at the
maximum rate, the computer will check the flag 50,000 times between each transfer. The
computer is wasting time while checking the flag instead of doing some other useful
processing task.

24

The way that the interrupt is handled by the computer can be explained by means of the
flowchart of Fig(19). An interrupt flip-flop R is included in the computer.

Instruction cycle =0 $ =1 Interrupt cycle

&

k|

Feich and decode

. . Store retumn address
instroction

in lecation O
M [0] &= PC

T

Execute
instructian

Branch to location 1
PC =1

L

IEN 10
R0

Rl

 J I T L Y

Figure 19 Flowchart for interrupt cycle.

Design of Basic Computer
The basic computer consists of the following hardware components:
. A memory unit with 4096 words of 16 bits each
. Nine registers: AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC
. Seven flip-flops: I, S, E, R, IEN, FGI, and FGO
. Two decoders: a 3 x 8 operation decoder and a 4 x 16 timing decoder
. A 16-bit common bus
. Control logic gates
. Adder and logic circuit connected to the input of AC
The outputs of the control logic circuit are:
. Signals to control the inputs of the nine registers
. Signals to control the read and write inputs of memory
. Signals to set, clear, or complement the flip-flops
. Signals for Sy, S1, and Sy to select a register for the bus

. Signals to control the AC adder and logic circuit.
25

~N o OB WDN

g B~ W DN B

