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Instruction Codes 

A computer instruction is a binary code that specifies a sequence of  microoperations for 

the computer. Instruction codes together with data are stored in memory. The computer reads 

each instruction from memory and places it in a control register. The control then interprets the 

binary code of the instruction and proceeds to execute it by issuing a sequence of   

microoperations. Every computer has its own unique instruction set. The ability to store  and 

execute instructions, the stored program concept, is the most important  property of a general- 

purpose computer. An instruction code is a group of bits that instruct the computer to perform 

a specific operation. It is usually divided into parts, each having its own particular 

interpretation. The most basic part of an instruction code is its operation part. The operation 

code of an instruction is a group of bits that define such operations as add, subtract, multiply, 

shift, and complement. The number of bits required for the operation code of an instruction 

depends on the total number of operations available in the computer. 

The simplest way to organize a computer is to have one processor register and an 

instruction code format with two parts. The first part specifies the operation to be performed 

and the second specifies an address. The memory address tells the control where to find an 

operand in memory. This operand is read from memory and used as the data to be operated on 

together with the data stored in the processor register. 

For a memory unit with 4096 words we need 12 bits to specify an address since         

212= 4096. If we store each   instruction code in one 16-bit memory word, we have available 

four bits for the operation code (abbreviated opcode) to specify one out of 16 possible  

operations, and 12 bits to specify the address of an operand. The control reads a 16-bit 

instruction from the program portion of memory. It uses the 12-bit address part of the 

instruction to read a 16-bit operand from the data portion of memory. Fig(12) depicts this type 

of organization. 

 
 

Computers that have a single-processor register usually assign to it the name accumulator and 

label it AC. 
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For example, operations such as clear AC, complement AC, and increment AC operate on data 

stored in the AC register. 

 When the second part of an instruction immediate code specifies an operand, this type is 

called immediate operand. When the second part specifies the address of an operand, the 

instruction is said to have a direct address. The third possibility called indirect address, 

where the bits in the second part of the instruction designate an address of a memory word in 

which the address of the operand is found. One bit of the instruction code can be used to 

distinguish between a direct and an indirect address. 

As an illustration of this configuration, consider the instruction code format shown in Fig(13). 

 
 

Computer Registers 

Computer instructions are normally stored in consecutive memory locations and are 

executed sequentially one at a time. The control reads an instruction from a specific address in 

memory and executes it. It then continues by reading the next instruction in sequence and 

executes it, and so on. This type of instruction sequencing needs a counter to calculate the 

address of the next instruction after execution of the current instruction is completed. The 

computer needs processor registers for manipulating data and a register for holding a memory 

address. These   requirements dictate the register configuration are listed in Table(9) and 

shown in Fig(14).  
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The basic computer has eight registers, a memory unit, and a control unit. The 

connection of the registers and memory of the basic computer to a common bus system is 

shown in Fig(15). 

Two registers, AR and PC, have 12 bits each since they hold a memory address. When 

the contents of AR or PC are applied to the 16-bit common bus, the four most significant bits 

are set to 0's. When AR or PC receive information from the bus, only the 12 least significant 

bits are transferred into the register. 

The input register INPR and the output register OUTR have 8 bits each and 

communicate with the eight least significant bits in the bus. The INPR receives a character 

from an input device which is then transferred to AC. OUTR receives a character from AC and 

delivers it to an output device. There is no transfer from OUTR to any of the other registers. 

Five registers have three control inputs: LD (load), INR (increment), and CLR (clear). 
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Computer Instructions 

The basic computer has three instruction code formats, as shown in Figure. Each format 

has 16 bits. 
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The type of instruction is recognized by the computer control from the four bits in 

positions 12through 15 of the instruction. If the three opcode bits in positions 12 through 14 

are not equal to 111, the instruction is a memory-reference type and the bit in position 15 is 

taken as the addressing mode J. If the 3-bit opcode is equal to 111, control then inspects the bit 

in position 15. If this bit is 0, the instruction is a register-reference type. If the bit is 1, the 

instruction is an input-output type. Note that the bit in position 15 of the instruction code is 

designated by the symbol J but is not used as a mode bit when the operation code is equal to 

111. 

The instructions for the computer are listed in Table(10): 

 
The set of instructions are said to be complete if the computer includes a sufficient 

number of instructions in each of the following categories: 

1. Arithmetic, logical, and shift instructions.  

2. Instructions for moving information to and from memory and processor registers.  

3. Instructions that check status information to provide decision making capabilities.  

4. Input and output instructions. 

5. The capability of stopping the computer. 
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Timing and Control 

The timing for all registers in the basic computer is controlled by a master clock generator. 

The clock pulses are applied to all flip-flops and registers in the system, including the flip-

flops and registers in the control unit. The control signals are generated in the control unit and 

provide control inputs for the multiplexers in the common bus, control inputs in processor 

registers, and microoperations for the accumulator. 

There are two major types of control organization:  

1- hardwired control : the control logic is implemented with gates, flip-flops, decoders, 

and other digital circuits. It has the advantage that it can be optimized to produce a fast 

mode of operation. 

2- microprogrammed control: the control information is stored in a control memory. The 

control memory is programmed to initiate the required sequence of microoperations.  

The block diagram of the control unit is shown in Fig(17): 

 
 

SC is incremented with every positive clock transition, unless its CLR input is active. 

This produces the sequence of timing signals T0, T1, T2, T3, T4, and so on, as shown in the 

diagram. (Note the relationship between the timing signal and its corresponding positive 
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clock transition.) If SC is not cleared, the timing signals will continue with T5, T6, up to T15 

and back to T0. 

As an example, consider the case where SC is incremented to provide timing signals T0, T1 

T2, T3, and T4 in sequence. At time T4, SC is cleared to 0 if decoder output D3 is active. This 

is expressed symbolically by the statement 

𝐷3𝑇4: 𝑆𝐶 ← 0 

 
 

Instruction Cycle  

A program residing in the memory unit of the computer consists of a sequence of 

instructions. The program is executed in the computer by going through a cycle for each 

instruction. In the basic computer each instruction cycle consists of the following phases:  

1. Fetch an instruction from memory.  

2. Decode the instruction.  

3. Read the effective address from memory if the instruction has an indirect address.  

4. Execute the instruction.  

This process continues indefinitely unless a HALT instruction is encountered. Initially, the 

program counter PC is loaded with the address of the first instruction in the program. The 

sequence counter SC is cleared to 0, providing a decoded timing signal T0. After each clock 

pulse, SC is incremented by one, so that the timing signals go through a sequence T0, T1, T2, 

and so on. The microoperations for the fetch and decode phases can be specified by the 

following register transfer statements. 

𝑇0: 𝐴𝑅 ← 𝑃𝐶 

                                    𝑇1: 𝐼𝑅 ← 𝑀[𝐴𝑅], 𝑃𝐶 = 𝑃𝐶 + 1 

𝑇2: 𝐷0, , , , 𝐷7 ← 𝐷𝑒𝑐𝑜𝑑𝑒 𝐼𝑅(12 − 14), 𝐴𝑅 ← 𝐼𝑅(0 − 11), 𝐼 ← 𝐼𝑅(15) 
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It is necessary to use timing signal T1 to provide the following connections in the bus system.  

1. Enable the read input of memory.  

2. Place the content of memory onto the bus by making S2S1S0 =111.  

3. Transfer the content of the bus to IR by enabling the LD input of IR.  

4. Increment PC by enabling the INR input of PC. 

 

Memory - Reference Instructions 

The table(11) lists the seven memory-reference instructions. The decoded output D, for  

i = 0,1, 2, 3, 4, 5, and 6 from the operation decoder that belongs effective address to each 

instruction is included in the table. The effective address of the instruction is in the address 

register AR and was placed there during timing signal T2 when I = 0, or during timing signal 

T3 when I=1. The symbolic description of each instruction is specified in the table in terms of 

register transfer notation. The actual execution of the instruction in the bus system will require 

a sequence of microoperations. 

 
 

Input - Output and Interrupt 

A computer can serve no useful purpose unless it communicates with the external 

environment. Instructions and data stored in memory must come from some input device. The 

input-output configuration is shown in Fig(18). The transmitter interface receives serial 

information from the keyboard and transmits it to INPR. The receiver interface receives 

information from OUTR and sends it to the printer serially. The 1-bit input flag FGI is a 

control flip-flop. The flag bit is set to 1 when new information is available in the input device 

and is cleared to 0 when the information is accepted by the computer. The output register 

OUTR works similarly but the direction of  information flow is reversed. Initially, the output 

flag FGO is set to 1. The computer checks the flag bit; if it is 1, the information from AC is 

transferred in parallel to OUTR and FGO is cleared to 0. 
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Input and output instructions are needed for transferring information to and from AC 

register, for checking the flag bits, and for controlling the interrupt facility. Input-output 

instructions have an operation code 1111 and are recognized by the control when D7 = 1 and I 

= 1. The remaining bits of the instruction specify the particular operation. The control 

functions and microoperations for the input-output instructions are listed in Table(12). These 

instructions are executed with the clock transition associated with timing signal T3. 

 

Consider a computer that can go through an instruction cycle in 1µs. Assume that the 

input-output device can transfer information at a maximum rate of 10 characters per second. 

This is equivalent to one character every 100,000µs. Two instructions are executed when the 

computer checks the flag bit and decides not to transfer the information. This means that at the 

maximum rate, the computer will check the flag 50,000 times between each transfer. The 

computer is wasting time while checking the flag instead of doing some other useful 

processing task.  
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The way that the interrupt is handled by the computer can be explained by means of the 

flowchart of Fig(19). An interrupt flip-flop R is included in the computer. 

 

Design of Basic Computer 

The basic computer consists of the following hardware components:  

1. A memory unit with 4096 words of 16 bits each  

2. Nine registers: AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC  

3. Seven flip-flops: I, S, E, R, IEN, FGI, and FGO  

4. Two decoders: a 3 x 8 operation decoder and a 4 x 16 timing decoder  

5. A 16-bit common bus  

6. Control logic gates  

7. Adder and logic circuit connected to the input of AC 

The outputs of the control logic circuit are:  

1. Signals to control the inputs of the nine registers  

2. Signals to control the read and write inputs of memory  

3. Signals to set, clear, or complement the flip-flops  

4. Signals for S2, S1, and S0 to select a register for the bus  

5. Signals to control the AC adder and logic circuit. 


