
UNIT-3

Designing with Layouts: Creating User Interfaces in Android- Creating Layouts Using XML

Resources, Creating Layouts Programmatically, Organizing Your User Interface-Using

ViewGroup Subclasses for Layout Design, Using ViewGroup Subclasses as View Containers,

Using Built-in Layout Classes- Using LinearLayout, Using RelativeLayout, Using

FrameLayout, Using TableLayout, Using GridLayout, Using Multiple Layouts on a Screen,

Partitioning the User Interface with Fragments-Understanding Fragments, Understanding the

Fragment Lifecycle, Working with Special Types of Fragments, Designing Fragment-Based

Applications, Using the Android Support Package, Adding Fragment Support to Legacy

Applications, Using Fragments in New Applications Targeting Older Platforms, Linking the

Android Support Package to Your Project, Displaying Dialogs-Choosing Your Dialog

Implementation, Exploring the Different Types of Dialogs, Working with Dialogs and

Dialog Fragments- Tracing the Lifecycle of a Dialog and DialogFragment, Working with

Custom Dialogs.

Creating Layouts Using XML Resources

Creating layouts using XML resources is a fundamental aspect of Android app development,

providing a declarative way to define the structure and appearance of user interfaces. XML

layouts are stored in the `res/layout` directory and offer a clear separation between design and

code. For instance, a simple XML layout for displaying a TextView might look like this:

```xml 

<!-- res/layout/activity_main.xml --> 

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" 

    android:layout_width="match_parent" 

    android:layout_height="match_parent"> 

 



    <TextView 

        android:id="@+id/textView" 

        android:layout_width="wrap_content" 

        android:layout_height="wrap_content" 

        android:text="Hello, World!" 

        android:layout_centerInParent="true" /> 

         

</RelativeLayout> 

 

Creating layouts programmatically  

in Android involves constructing the user interface using Java or Kotlin code rather than 

defining it in XML. This approach is particularly useful for dynamic UI elements that need to 

be created or modified at runtime. Programmatically creating layouts allows for greater 

flexibility and control over the UI components, enabling you to respond to user interactions or 

other runtime conditions more effectively. 

 

**Example in Java:** 

 

```java 

// MainActivity.java

import android.os.Bundle;

import android.widget.LinearLayout;

import android.widget.TextView;

import androidx.appcompat.app.AppCompatActivity;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 // Create a LinearLayout instance

 LinearLayout layout = new LinearLayout(this);

 layout.setOrientation(LinearLayout.VERTICAL);

 // Create a TextView instance

 TextView textView = new TextView(this);

 textView.setText("Hello, World!");

 // Add the TextView to the LinearLayout

 layout.addView(textView);

 // Set the LinearLayout as the content view of the activity

 setContentView(layout);

 }

}

``` 

In this example, a `LinearLayout` is created and configured with a vertical orientation. A 

`TextView` is then created, and its text is set to "Hello, World!". The `TextView` is added to 

the `LinearLayout`, and finally, the `LinearLayout` is set as the content view of the activity 

using `setContentView(layout)`. This programmatic approach enables dynamic and flexible UI 

creation in Android applications. 

Organizing Your User Interface Using ViewGroup Subclasses for Layout 

Design 

In Android development, organizing the user interface effectively is crucial for creating 

intuitive and responsive applications. ViewGroup subclasses, such as `LinearLayout`, 

`RelativeLayout`, `FrameLayout`, `TableLayout`, and `GridLayout`, provide various ways to 

arrange and manage UI components. Each subclass offers unique layout capabilities: 

`LinearLayout` aligns children either vertically or horizontally, `RelativeLayout` positions 

them relative to each other, `FrameLayout` stacks them, `TableLayout` arranges them in a grid 

of rows and columns, and `GridLayout` provides a more flexible grid system. Utilizing these 

ViewGroup subclasses allows developers to create complex and well-structured user interfaces 

that enhance the user experience. 

Using ViewGroup Subclasses as View Containers 

In Android, `ViewGroup` subclasses act as containers that hold and manage the layout and 

behavior of child views. These subclasses, such as `LinearLayout`, `RelativeLayout`, 

`FrameLayout`, `TableLayout`, and `GridLayout`, provide different ways to arrange and 

organize user interface components. By using these ViewGroup containers, developers can 

create complex and responsive layouts that adapt to various screen sizes and orientations. Each 

`ViewGroup` subclass offers unique properties and methods that help in aligning, positioning, 



and managing the visibility of its child views, enabling the creation of sophisticated and well-

structured user interfaces. 

Using Built-in Layout Classes 

Using LinearLayout 

`LinearLayout` is a versatile layout manager that arranges its child views in a single direction, 

either vertically or horizontally. It simplifies the process of aligning components linearly, 

making it ideal for creating simple, column or row-based layouts. Each child can specify its 

size using layout parameters like `layout_width` and `layout_height`. 

 

**Example:** 

```xml 

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="match_parent"

 android:layout_height="match_parent">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello, World!" />

</LinearLayout>


``` 

 

Using RelativeLayout 

`RelativeLayout` enables more flexible positioning of child views relative to each other or to 

the parent layout. This makes it a powerful tool for creating more complex layouts without 

nesting multiple views. You can position a view to the left, right, above, or below another view 

using layout attributes like `layout_toLeftOf`, `layout_below`, etc. 

 

**Example:** 

```xml 

<RelativeLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent">

 <TextView

 android:id="@+id/textView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello, World!" />

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_below="@id/textView"

 android:text="Click Me" />

</RelativeLayout>

``` 

Using FrameLayout 

`FrameLayout` is designed to block out an area on the screen to display a single item. Child 

views are stacked on top of each other, and only the last added view is visible. This layout is 

useful for creating overlay effects, where one view overlaps another. 

**Example:** 

```xml 

<FrameLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent">

 <ImageView

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:src="@drawable/background_image" />

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Overlay Text"

 android:layout_gravity="center" />

</FrameLayout>

``` 

 

Using TableLayout 

`TableLayout` arranges its child views into rows and columns. Each row is defined by a 

`TableRow` object, which can contain multiple views. This layout is ideal for creating grid-like 

structures where content needs to be organized into a tabular format. 

 

**Example:** 

```xml 

<TableLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent">

 <TableRow>

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Row 1, Column 1" />

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Row 1, Column 2" />

 </TableRow>

 <TableRow>

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Row 2, Column 1" />

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Row 2, Column 2" />

 </TableRow>

</TableLayout>

``` 

Using GridLayout 

`GridLayout` provides a more flexible grid structure compared to `TableLayout`. It allows 

specifying the number of rows and columns and offers more control over how views are placed 

within each cell. This layout is suitable for creating complex grid-based designs. 

 

**Example:** 

```xml 

<GridLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:columnCount="2">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Item 1" />

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Item 2" />

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Item 3" />

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Item 4" />

</GridLayout>

``` 

 

Using Multiple Layouts on a Screen 

Combining multiple layouts on a single screen allows for creating complex and responsive UI 

designs. You can nest layouts within each other to achieve the desired structure and appearance. 

 

**Example:** 

```xml 

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="match_parent"

 android:layout_height="match_parent">

 <RelativeLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content">

 <TextView

 android:id="@+id/textView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Relative Layout Text" />

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_below="@id/textView"

 android:text="Relative Layout Button" />

 </RelativeLayout>

 <FrameLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content">

 <ImageView

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:src="@drawable/frame_image" />

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Frame Layout Text"

 android:layout_gravity="center" />

 </FrameLayout>

</LinearLayout>

``` 

These examples demonstrate how to use various built-in layout classes to organize and 

structure user interfaces effectively in Android applications. 



Partitioning the User Interface with Fragments 

 

Understanding Fragments 

Fragments are modular sections of an activity, representing a portion of the user interface. They 

enable more flexible and reusable UI designs, as they can be combined, reused, and managed 

independently within activities. Each fragment has its own lifecycle and can handle its own 

events, making it a powerful tool for creating dynamic UIs. 

 

  

Understanding the Fragment Lifecycle 

The fragment lifecycle is similar to the activity lifecycle, with stages such as `onAttach`, 

`onCreate`, ̀ onCreateView`, ̀ onActivityCreated`, ̀ onStart`, ̀ onResume`, ̀ onPause`, ̀ onStop`, 

`onDestroyView`, `onDestroy`, and `onDetach`. These methods allow you to manage the 

fragment's behavior and resources at different points in its existence, ensuring proper handling 

of user interactions and system changes. 

 

Working with Special Types of Fragments 

There are several special types of fragments designed for specific tasks, such as 

`DialogFragment`, which displays a floating dialog, and `ListFragment`, which simplifies the 

creation of lists. These specialized fragments provide additional functionality and simplify 

common UI patterns. 

 

Designing Fragment-Based Applications 



Fragment-based applications use fragments to create flexible and dynamic user interfaces. By 

modularizing the UI into fragments, developers can build more responsive and adaptable 

applications, allowing different layouts and behaviors for different screen sizes and 

orientations. 

Using the Android Support Package 

The Android Support Package provides libraries that enable the use of fragments and other 

newer Android features on older platform versions. This ensures that applications can maintain 

backward compatibility while taking advantage of modern UI components. 

 

Adding Fragment Support to Legacy Applications 

To add fragment support to legacy applications, integrate the Android Support Library into the 

project. This allows the use of `FragmentActivity` and other support library classes to manage 

fragments in applications targeting older Android versions. 

 

Using Fragments in New Applications Targeting Older Platforms 

When developing new applications that need to support older Android versions, use the 

Android Support Library to ensure compatibility. This enables the use of fragments and other 

modern features while maintaining functionality on older devices. 

 

 Linking the Android Support Package to Your Project 

To use the Android Support Package in your project, add the appropriate dependencies to your 

`build.gradle` file. This includes libraries such as `com.android.support:appcompat-v7` and 

`com.android.support:support-fragment`, which provide the necessary classes and methods to 

implement fragments and other support features in your application. 

 



By understanding and effectively utilizing fragments, developers can create modular, flexible, 

and backward-compatible user interfaces that enhance the overall user experience across 

different devices and Android versions. 

Displaying Dialogs 

Choosing Your Dialog Implementation 

When it comes to displaying dialogs in Android, there are several implementations to choose 

from. The most common options include using `AlertDialog` for simple alerts, 

`DatePickerDialog` and `TimePickerDialog` for selecting dates and times, and 

`DialogFragment` for more complex dialogs. Choosing the right dialog implementation 

depends on the specific needs of your application and the complexity of the user interaction 

required. 

 

 Exploring the Different Types of Dialogs 

Android provides a variety of built-in dialogs to cater to different needs. ̀ AlertDialog` is widely 

used for showing alerts with a title, message, and action buttons. `DatePickerDialog` and 

`TimePickerDialog` are specialized dialogs for picking dates and times, respectively. 

Additionally, custom dialogs can be created using `DialogFragment` for scenarios where the 

built-in dialogs do not meet the application's requirements. 

 

Working with Dialogs and Dialog Fragments 

Dialogs in Android can be created and managed through the `DialogFragment` class, which 

allows for better control over the dialog's lifecycle and state management. A `DialogFragment` 

can be displayed by using the `show` method, which attaches the dialog to the fragment 

manager. This approach provides better integration with the activity lifecycle and allows for 

more flexible and reusable dialog implementations. 

 



Tracing the Lifecycle of a Dialog and DialogFragment 

The lifecycle of a `DialogFragment` is similar to that of a regular fragment, with methods such 

as ̀ onCreate`, ̀ onCreateDialog`, ̀ onCreateView`, ̀ onStart`, ̀ onResume`, ̀ onPause`, ̀ onStop`, 

and `onDestroyView`. Understanding these lifecycle methods is crucial for managing the 

dialog's state and ensuring it behaves correctly in response to configuration changes and user 

interactions. 

 

Working with Custom Dialogs 

Creating custom dialogs involves extending `DialogFragment` and overriding the 

`onCreateDialog` method to provide a custom layout and functionality. Custom dialogs offer 

greater flexibility and control over the appearance and behavior of the dialog. They can include 

complex layouts, custom animations, and advanced interactions that are not possible with the 

standard dialog types. 

 

**Example:** 

```java 

// CustomDialogFragment.java

public class CustomDialogFragment extends DialogFragment {

 @Override

 public Dialog onCreateDialog(Bundle savedInstanceState) {

 AlertDialog.Builder builder = new AlertDialog.Builder(getActivity());

 LayoutInflater inflater = requireActivity().getLayoutInflater();

 View view = inflater.inflate(R.layout.custom_dialog, null);

 builder.setView(view)

 .setPositiveButton("OK", new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int id) {

 // Handle positive button action

 }

 })

 .setNegativeButton("Cancel", new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int id) {

 // Handle negative button action

 }

 });

 return builder.create();

 }

}

``` 

This example demonstrates creating a custom dialog by inflating a custom layout and using 

`AlertDialog.Builder` to set up the dialog. This approach allows for extensive customization 

and complex UI designs within dialogs. 

 


