
Multiprocessor Vs Multicore

Multiprocessor Vs Multicore
Multicore Multiprocessor

A multicore processor has a single processor
with multiple cores that read and execute
instructions.

A Multiprocessor has two or more processors
that allow simultaneous processing of
programs.

Multicore executes a single program faster.
Multiprocessor executes multiple programs
faster.

Multicore processors are not as reliable as
multiprocessors.

Multiprocessors are more reliable as multiple
processors are available and failure of one
processor will not affect the others.

Multicore has a simple configuration.
Multiprocessor requires complex
configuration.

Multicore has less traffic. Multiprocessor has more traffic.

Multicore is cheap as there is a single
processor.

Multiprocessor is expensive compared to
multicore.

Threads

• A process is an instance of a program running on a computer. Each
process has its memory space, system resources, and execution context.
• web browser or a word processor.
• Independent Projects in Different Departments.

• A thread is a smaller unit of execution within a process. Multiple threads
within the process share the same memory space and resources, allowing
for more efficient communication and data sharing. Threads are often
referred to as “lightweight processes.”
• Team Members Working on a Single Project.

Threads

Multitasking

Multitasking

Java’s Multithreading Model

• Java has completely done away with the event loop/ polling mechanism
(Event loop/polling means- Executing one process after another
which results in CPU time wastage)

• In Java, All the libraries and classes are designed with multithreading in
mind. This enables the entire system to be asynchronous.

• In Java the java.lang.Thread class is used to create thread-based code,
imported into all Java applications by default.

• The Thread class has two primary thread control methods:

• public void start() : The start() method starts a thread
execution

• public void run() : The run() method actually performs the
work of the thread and is the entry point for the thread

• The thread dies when the run() method terminates

• You never call run() explicitly

• The start() method called on a thread automatically initiates a call to
the thread’s run() method

Java’s Multithreading Model

8

Java’s Thread State Diagram

9

Creating a Thread

• A thread can be created by instantiating an object of type Thread.

• This can be achieved in any of the following two ways :

1. Implementing the Runnable interface

2. Extending the Thread class

Extending the Thread class

• We can also create Threads by extending the Thread class:

1. Instantiate the class that extends Thread

2. This class must override run() method

3. The code that should run as a thread will be part of this run()
method

4. We must call the start() method on this thread

5. start() in turn calls the thread’s run() method

Extending the Thread class
//A very simple demo for creating threads by extending Thread class:-

public class ThreadDemo extends Thread{
public void run(){

for(int counter=1;counter<=100;counter++){
System.out.println("thread is running..."+counter);

}
}

public static void main(String args[]){
ThreadDemo threadDemo=new ThreadDemo();
threadDemo.start();

}
}

Creating Threads: Implementing Runnable

• Thread can be created by creating a class that implements Runnable
interface.

• class DemoThread implements Runnable{}

• After defining the class that implements Runnable, we have to create an
object of type Thread from within the object of that class.

• This thread will end when run() returns or terminates.

• The Thread class defines several constructors one of which is:

• Thread(Runnable threadOb, String threadName)

Creating Threads: Implementing Runnable
public class ThreadDemo implements Runnable {

public void run() {

for(int counter=1;counter<=100;counter++){
System.out.println("thread is running..."+counter);

}

}

public static void main(String args[])
{

ThreadDemo threadDemo = new ThreadDemo();
Thread t1 = new Thread(threadDemo);
t1.start();

}
}

The main Thread

• When a Java program starts executing:

• the main thread begins running

• the main thread is immediately created when main() commences
execution

• Information about the main or any thread can be accessed by
obtaining a reference to the thread using a public, static method in the
Thread class called currentThread()

Extending the Thread class
public class ThreadInfo {

public static void main(String args[]) {
Thread t = Thread.currentThread();
System.out.println("Current Thread :" +t);
t.setName("Demo Thread");
System.out.println("New name of the thread :" +t);
try {

Thread.sleep(1000);
}
catch (InterruptedException e) {

System.out.println("Main Thread Interrupted");
}

}
}

Control Thread Execution

• Two ways exist by which you can determine whether a thread has
finished:

• The isAlive() method will return true if the thread upon which it is called
is still running; else it will return false

• The join() method waits until the thread on which it is called terminates.

• Syntax:
• final boolean isAlive()
• final void join() throws InterruptedException

Thread Priorities

• Every thread has a priority

• When a thread is created it inherits the priority of the thread that created
it

• The methods for accessing and setting priority are as follows:
• public final int getPriority();
• public final void setPriority(int level);

Synchronization

• It is normal for threads to be sharing objects and data

• Different threads shouldn’t try to access and change the same data at the
same time

• Threads must therefore be synchronized

• There is a need for a mechanism toensure that the shared data will be
used by only one thread at a time

• This mechanism is called synchronization.

Synchronization

class Account {

int balance;

public Account(){

balance=5000;

}

public void withdraw(int bal){
balance= balance-bal;
System.out.println("Balance remaining:::" +

balance);

}

}

Synchronization

class C implements Runnable{

Account obj;

public C(Account a)

{

obj=a;

}

public void run()

{

obj.withdraw(500);

}

}

class SynchEx{
public static void main (String args[]
)
{

Account a1=new Account();
C c1=new C(a1);
Thread t1=new Thread(c1);
Thread t2=new Thread(c1);
t1.start();
t2.start();

}
}

Synchronization

• When one thread acquires the
lock on the shared resource, the
other threads need to wait for the
lock to be released.

Synchronization

• Synchronization can be applied to:

• A method

• public synchronized withdraw(){…}

• A block of code

• synchronized (objectReference){…}

• Synchronized methods in subclasses use same locks as their superclasses

Inter Thread Communication

• Threads are often interdependent - one thread depends on another thread
to complete an operation, or to service a request

• The words wait and notify encapsulate the two central concepts to thread
communication

• A thread waits for some condition or event to occur. You notify a waiting
thread that a condition or event has occurred.

Inter Thread Communication

• wait() directs the calling thread to surrender the monitor, and go to
sleep until some other thread enters the monitor of the same object,
and calls notify()

• notify() wakes up the other thread which was waiting on the same
object(that had called wait() previously on the same object)

Inter Thread Communication

• Consider the situation, where one thread(Developer) is producing some
data, and another thread(Client) is consuming it.

• Suppose that the Developer has to wait until the Client has completed
reading before it produces more data. In a polling system, the Client
would waste many CPU cycles while it waits for the Developer to produce.

Inter Thread Communication
class QueueClass {

int number;

synchronized int get() {
System.out.println("Got: " + number);
return number;

}

synchronized void put(int number) {
this.number = number;
System.out.println("Put: " + number);

}
}

Inter Thread Communication
class Developer implements Runnable {

QueueClass queueClass;

Developer (QueueClass queueClass) {
this.queueClass = queueClass;

}

public void run() {
int i = 0;
for(int j=0; j<50; j++) {

queueClass.put (i++);
}

}
}

Inter Thread Communication
class Client implements Runnable {

QueueClass queueClass;

Client (QueueClass queueClass) {
this.queueClass = queueClass;

}

public void run() {
for(int j=0; j<50; j++) {

queueClass.get();
}

}

}

Inter Thread Communication
public class Caller {

public static void main(String args[]) {
QueueClass queueClass = new QueueClass();
Developer Dev = new Developer(queueClass);
Client cl = new Client (queueClass);
Thread t1=new Thread(Dev);
Thread t2=new Thread(cl);
t1.start();
t2.start();
System.out.println("Press Control-C to stop");

}
}

wait() and notify()
synchronized void put(int number) {

if (valueset==true)
try {

wait();
}
catch (InterruptedException e) {

System.out.println("InterruptedException caught");
}

this.number = number;
valueset = true;
System.out.println("Put: " + number);
notify();

}
}

class QueueClass {
int number;
boolean valueset = false;

wait() and notify()
synchronized int get() {

if (valueset==false)
try {

wait();
}

catch (InterruptedException e) {
System.out.println("InterruptedException caught");

}
System.out.println("Got: " + number);
valueset = false;
notify();
return number;

}

33

Java Collections

34

Java 2 Collections
• A collection is an object that groups multiple

elements into a single unit
• Very useful

• store, retrieve and manipulate data
• transmit data from one method to another
• data structures and methods written by hotshots in the

field
• Joshua Bloch, who also wrote the Collections tutorial

35

Collections Framework

• Unified architecture for representing and manipulating collections.
• A collections framework contains three things

• Interfaces
• Implementations
• Algorithms

36

Collections Framework Diagram

•Interfaces, Implementations, and Algorithms
•From Thinking in Java, page 462

37

Collection Interface

• Defines fundamental methods
• int size();
• boolean isEmpty();
• boolean contains(Object element);
• boolean add(Object element); // Optional
• boolean remove(Object element); // Optional
• Iterator iterator();

• These methods are enough to define the basic behavior of a
collection

• Provides an Iterator to step through the elements in the Collection

38

Iterator Interface
• Defines three fundamental methods

• Object next()
• boolean hasNext()
• void remove()

• These three methods provide access to the
contents of the collection

• An Iterator knows position within collection
• Each call to next() “reads” an element from the

collection
• Then you can use it or remove it

39

Iterator Position

40

Example - SimpleCollection

public class SimpleCollection {
public static void main(String[] args) {
Collection c;
c = new ArrayList();
System.out.println(c.getClass().getName());
for (int i=1; i <= 10; i++) {

c.add(i + " * " + i + " = "+i*i);
}
Iterator iter = c.iterator();
while (iter.hasNext())

System.out.println(iter.next());
}

}

41

List Interface Context

Collection

List

42

List Interface

• The List interface adds the notion of order to a collection
• The user of a list has control over where an element is added in the

collection
• Lists typically allow duplicate elements
• Provides a ListIterator to step through the elements in the list.

43

ListIterator Interface

• Extends the Iterator interface
• Defines three fundamental methods

• void add(Object o) - before current position
• boolean hasPrevious()
• Object previous()

• The addition of these three methods defines the basic behavior of an
ordered list

• A ListIterator knows position within list

44

Iterator Position - next(), previous()

45

ArrayList and LinkedList Context

ArrayList LinkedList

Collection

List

46

List Implementations

• ArrayList
• low cost random access
• high cost insert and delete
• array that resizes if need be

• LinkedList
• sequential access
• low cost insert and delete
• high cost random access

47

ArrayList overview

• Constant time positional access (it’s an array)
• One tuning parameter, the initial capacity

public ArrayList(int initialCapacity) {

super();

if (initialCapacity < 0)

throw new IllegalArgumentException(

"Illegal Capacity: "+initialCapacity);

this.elementData = new Object[initialCapacity];

}

48

ArrayList methods
• The indexed get and set methods of the List interface are

appropriate to use since ArrayLists are backed by an array
• Object get(int index)
• Object set(int index, Object element)

• Indexed add and remove are provided, but can be costly if
used frequently

• void add(int index, Object element)
• Object remove(int index)

• May want to resize in one shot if adding many elements
• void ensureCapacity(int minCapacity)

49

LinkedList overview

• Stores each element in a node
• Each node stores a link to the next and previous nodes
• Insertion and removal are inexpensive

• just update the links in the surrounding nodes

• Linear traversal is inexpensive
• Random access is expensive

• Start from beginning or end and traverse each node while counting

50

LinkedList entries
private static class Entry {

Object element;

Entry next;

Entry previous;

Entry(Object element, Entry next, Entry previous) {

this.element = element;

this.next = next;

this.previous = previous;

}

}

private Entry header = new Entry(null, null, null);

public LinkedList() {

header.next = header.previous = header;

}

51

LinkedList methods
• The list is sequential, so access it that way

• ListIterator listIterator()

• ListIterator knows about position
• use add() from ListIterator to add at a position
• use remove() from ListIterator to remove at a position

• LinkedList knows a few things too
• void addFirst(Object o), void addLast(Object o)
• Object getFirst(), Object getLast()
• Object removeFirst(), Object removeLast()

52

Set Interface Context

Collection

Set

53

Set Interface
• Same methods as Collection

• different contract - no duplicate entries

• Defines two fundamental methods
• boolean add(Object o) - reject duplicates
• Iterator iterator()

• Provides an Iterator to step through the elements
in the Set

• No guaranteed order in the basic Set interface
• There is a SortedSet interface that extends Set

54

HashSet and TreeSet Context

HashSet TreeSet

Collection

Set

55

HashSet
• Find and add elements very quickly

• uses hashing implementation in HashMap

• Hashing uses an array of linked lists
• The hashCode() is used to index into the array
• Then equals() is used to determine if element is in the

(short) list of elements at that index

• No order imposed on elements
• The hashCode() method and the equals() method

must be compatible
• if two objects are equal, they must have the same
hashCode() value

56

TreeSet

• Elements can be inserted in any order
• The TreeSet stores them in order

• Red-Black Trees out of Cormen-Leiserson-Rivest

• An iterator always presents them in order
• Default order is defined by natural order

• objects implement the Comparable interface
• TreeSet uses compareTo(Object o) to sort

• Can use a different Comparator
• provide Comparator to the TreeSet constructor

57

Map Interface Context

Map

58

Map Interface
• Stores key/value pairs
• Maps from the key to the value
• Keys are unique

• a single key only appears once in the Map
• a key can map to only one value

• Values do not have to be unique

59

Map methods
Object put(Object key, Object value)

Object get(Object key)

Object remove(Object key)

boolean containsKey(Object key)

boolean containsValue(Object value)

int size()

boolean isEmpty()

60

Map views
• A means of iterating over the keys and values in a Map
• Set keySet()

• returns the Set of keys contained in the Map
• Collection values()

• returns the Collection of values contained in the Map.
This Collection is not a Set, as multiple keys can map to
the same value.

• Set entrySet()
• returns the Set of key-value pairs contained in the Map.

The Map interface provides a small nested interface
called Map.Entry that is the type of the elements in this
Set.

61

HashMap and TreeMap Context

HashMap TreeMap

Map

62

HashMap and TreeMap

• HashMap
• The keys are a set - unique, unordered
• Fast

• TreeMap
• The keys are a set - unique, ordered
• Same options for ordering as a TreeSet

• Natural order (Comparable, compareTo(Object))
• Special order (Comparator, compare(Object, Object))

63

Bulk Operations

• In addition to the basic operations, a Collection may provide “bulk”
operations

boolean containsAll(Collection c);
boolean addAll(Collection c); // Optional
boolean removeAll(Collection c); // Optional
boolean retainAll(Collection c); // Optional
void clear(); // Optional
Object[] toArray();
Object[] toArray(Object a[]);

64

Utilities Context

65

Utilities

• The Collections class provides a number of static methods for
fundamental algorithms

• Most operate on Lists, some on all Collections
• Sort, Search, Shuffle
• Reverse, fill, copy
• Min, max

• Wrappers
• synchronized Collections, Lists, Sets, etc
• unmodifiable Collections, Lists, Sets, etc

66

Legacy classes

• Still available
• Don’t use for new development

• unless you have to, eg, J2ME, J2EE in some cases

• Retrofitted into Collections framework
• Hashtable

• use HashMap

• Enumeration
• use Collections and Iterators
• if needed, can get an Enumeration with Collections.enumeration(Collection c)

67

More Legacy classes
• Vector

• use ArrayList

• Stack
• use LinkedList

• BitSet
• use ArrayList of boolean, unless you can’t stand the

thought of the wasted space

• Properties
• legacies are sometimes hard to walk away from …
• see next few pages

68

Properties class

• Located in java.util package
• Special case of Hashtable

• Keys and values are Strings
• Tables can be saved to/loaded from file

69

System properties
• Java VM maintains set of properties that define

system environment
• Set when VM is initialized
• Includes information about current user, VM version, Java

environment, and OS configuration

Properties prop = System.getProperties();

Enumeration e = prop.propertyNames();

while (e.hasMoreElements()) {

String key = (String) e.nextElement();

System.out.println(key + " value is " +

prop.getProperty(key));

}

