PVP14 REGULATIONS COMPUTER SCIENCE & ENGINEERING PVPSIT

IV/IV B. TECH. SECOND SEMESTER PARALLEL COMPUTING (Elective- III)

Course Code: CS 8T2B	
Lecture: 3 periods/ week	
Tutorial: 1period/week	

Credits: 3 Internal assessment: 30 Marks Semester end examination: 70 Marks

Prerequisites: C programming language, Data structures and algorithms.

Course Objectives:

- 1. To understand the concepts Parallel Computers, Data and Temporal Parallelism.
- 2. To learn Structures of Parallel Computers.
- 3. To understand the concepts of Operating Systems for Parallel Computers.
- 4. To acquire knowledge on CUDA.
- 5. To learn Parallel Programming with CUDA C.

Course Outcomes:

At the end of this course student will:

CO1) Solve the Problems in Parallel

- CO2) Have knowledge on Different Structures of Parallel Computers
- CO3) Understand the Performance Evaluation of Parallel Computers
- CO4) Get acquaintance on CUDA
- CO5) Develop Parallel Programs In CUDA C

Syllabus:

UNIT 1

Inroduction:

Why do we Need High Speed Computing, How do we Increase the Speed of Computers, History of Parallel Computers.

Solving problems in parallel: Utilizing Temporal Parallelism , Utilizing Data Parallelism , Comparison of Temporal and Data Parallel Processing , Data Parallel Processing with Specialized Processors.

PVP14 REGULATIONS COMPUTER SCIENCE & ENGINEERING PVPSIT

UNIT 2

Structure of parallel computers: A Generalized Structure of a Parallel Computer, Classification of Parallel Computers, Vector Computers, A Typical Vector Super Computer, Array Processors, Shared Memory Parallel Computers, Distributed Shared Memory Parallel Computers, Message Passing Parallel Computers.

UNIT 3

Operating systems for parallel computers: Resource Management , Process Management , Process Synchronization , Inter-process Communication , Memory Management , Input/output (Disk Arrays) , Basics of Performance Evaluation , Performance Measurement Tools.

UNIT 4

Computer unified device architecture: The age of parallel processing, The rise of GPU computing, CUDA, Applications of CUDA, Development Environment-CUDA Enabled Graphics Processors, NVIDIA Device driver, CUDA Development Tool kit, Standard C compiler.

UNIT 5

CUDA C:

Introduction to CUDA C: First program, Querying Devices, Using Device Properties, Parallel Programming in CUDA C: CUDA Parallel Programming- Summing Vectors program

Learning Resource

Text Books

1. Parallel Computers Architecture and Programming, V. Rajaraman, C. Siva Ram Murthy, PHI.

2. CUDA By Example, Jason Sanders, Edward Kandrot, Addison_Wesley. **References**

1. Introduction to Parallel Computing, Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar, Pearson Education.

2. Parallel Computing Theory and Practice, Michel j.Quinn