(ELECTIVE – A/I) 4/4 B.Tech. SEVENTH SEMESTER COMPUTER METHODS IN POWER SYSTEMS s/week Internal assess

Lecture: 3 periods/week Tutorial: 1 period /week POWER SYSTEMS Credits:3 Internal assessment: 30 marks Semester end examination: 70 marks

Course Objective:

EE7T5A

This course is designed to give students the required knowledge for the design and analysis of electrical power system. Calculation of power flow in a power system network using various techniques, formation of Ybus, Zbus and its importance are covered in this course. It also deals with analysis of transient stability.

Course Outcomes:

After completing this course, student is able to

- 1. Analyse fault using Z-bus.
- 2. Develop computer programs for different load flow techniques.
- 3. Analyse security of the power system.
- 4. Perform stability analysis of power system

UNIT I

Network Topology

Incidence and network matrices: Introduction, graphs, incidence matrices, primitive matrices, types of network matrices, formation of network matrix, π -representation of off-nominal tap transformers, Y-bus formation by singular transformation, examples of formation of incidence matrices, formation of Ybus by inspection method.

UNIT II

Analysis Of Faulted Power System

Algorithms for formation of Z-bus matrix: Step by Step algorithm for formation of Z-bus. Modification of Z-bus matrix for changes in the network, numerical Problems. Short circuit analysis of large power systems using Z bus, analysis of open circuit faults.

UNIT III

Power Flow Analysis

Introduction, sparsity technique for Ybus, power flow solution algorithms, Gauss-Seidal method, Newton Raphson load flow method, Fast decoupled load flow method and dc load flow method, numerical examples.

UNIT IV

Security and Contingency Analysis

Introduction, factors affecting power system security, contingency analysis- linear sensitivity factors, contingency selection.

UNIT V Stability Analysis

Classification of power system stability, classical model of synchronous machines(SMIB) - excitation and power system stabilizer(PSS) representation. Numerical integration methods -Runge Kutta fourth order methods and modified Euler's method. Transient stability algorithm using modified Euler's method and fourth order Runge Kutta method.

1

Learning Resources

Text Books:

- 1. Computer Techniques in Power System Analysis, Pai, M. A- TMH Publishers, 2nd edition, 2006.
- 2. K.U.Rao: Computer Techniques and Models in Power Systems, I.K.International Pvt.Ltd.
- 3. Modern Power System Analysis, Nagrath, I. J., and Kothari, D. P, TMH,4th edition, 2003.

Reference Books:

- 1. Advanced Power System Analysis and Dynamics, Singh, L. P,New Age International (P) Ltd, New Delhi, 2001, 5th Edition.
- 2. Power System Analysis, Haadi Sadat, TMH, 2nd Edition, 4th edition, 2007