Mining Massive Datasets (Professional Elective –III)

Course Code	20IT4701E	Year	IV	Semester	I
Course Category	PE3	Branch	IT	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Data mining
Continuous Internal Evaluation:	30	Semester End Evaluation :	70	Total Marks:	100

<u>Correlation between CO – PO, CO- PSO (Use</u> $\sqrt{\text{symbol for representing correlation)}}$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	\checkmark													
CO2		\checkmark												
CO3		\checkmark												
CO4														

Strength of Correlation between CO – PO, CO- PSO in scale of 1-3

1: Slight (low), 2: Moderate (medium) 3: Substantial (High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2		3												
CO3		3												
CO4				3									3	3
Overall course	3	3		3									3	3

	Course Outcomes					
Upon	Upon Successful completion of course, the student will be able to					
CO1	Recollecting fundamentals of data mining.	L2				
CO2	Apply the concept of Map reduce and data streams for storing and processing of massive data sets	L3				
CO3	Analyze the issues underlying the effective applications of massive data sets	L4				
CO4	Evaluate different clustering algorithms and analyze various decomposition techniques	L4				

	Syllabus	
Unit No	Contents	Mapped CO
Ι	Data Mining: Introduction, Statistical Modeling, Machine Learning, Computational Approaches to Modeling, Feature Extraction, Statistical Limits on Data Mining, Hash Functions, Indexes, Natural Logarithms, Power Laws.	CO1

	Map Reduce and the New Software Stack: Distributed File Systems, Map Reduce,				
	Algorithms Using MapReduce, Extensions to MapReduce, Complexity Theory for	CO2			
II	MapReduce.				
	Mining Data Streams: The Stream Data Model, Sampling Data in a Stream,				
ш	Filtering Streams, Counting Distinct Elements in a Stream, Counting Ones in a	CO1,CO2			
	Window, Decaying Windows.				
	Frequent Item sets: The Market-Basket Model, Market Baskets and the A-Priori				
IV	Algorithm, Handling Larger Datasets in Main Memory, Limited-Pass Algorithms,	CO1 CO3			
	Counting Frequent Items in a Stream.	01,005			
	Clustering: Introduction to Clustering Techniques, Hierarchical Clustering, K-means				
	Algorithms, The CURE Algorithm, Clustering in Non-Euclidean Spaces, and				
V	Clustering for Streams and Parallelism.	CO1,CO			
	Dimensionality Reduction: Eigen values and Eigenvectors of Symmetric Matrices,	4			
	Principal-Component Analysis, Singular-Value Decomposition, CUR Decomposition				
	Learning Resources				
Text Books					
1. Mining of Massive Datasets - Jure Leskovec, Anand Rajaraman, Jeffrey D. Ullman" (LaTeX)					