ROBOTICS

Course code	20ME2702B	Year	IV	Semester	I
Course category	Open Elective-IV	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	-
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

CO	Statement: The students will be able to	Skill	Blooms	Uni
			Level	ts
CO1	Understand the basic anatomy of robots, actuators, end effectors, robot sensors, programming and applications.	Understand	L2	1,2, 3,4, 5
CO2	Understand the working principles of robot actuators, end effectors	Understand	L2	2
CO3	Apply robot programming skills	Apply, Modern Tool Usage	L3	3
CO4	Apply knowledge of robot sensors and their applications in industries	Apply	L3	4,5

		Contribution of Course Outcomes towards achievement of Program Outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												3	1
CO2	3	3											3	1
CO3	3	3	2		2								3	1
CO4	3		2										3	1

	Syllabus					
Unit No	Contents					
I	Introduction: Automation and robotics – History of robots -Robot anatomy – classification of robots, major components-robot specifications, selection of robots.					
II	Robot actuators - Pneumatic, Hydraulic actuators, electric & stepper motors End Effectors - types of end effectors, grippers and tools, Requirements and challenges of end effectors.					
Ш	Robot Programming: - Robot programming languages - programming methods - off and online programming - Lead through method - Teach pendent method, simple programs.					
IV	Sensors used in robots: Sensor devices, Types of sensors - contact, position and displacement sensors, Force and torque sensors - Proximity and range sensors - acoustic sensors - slip sensors, Robot vision systems					
V	Applications of robots: Application of robots in industry - material handling, processing operations, assembly, and inspection operations.					

Learning Resource

Text books:

- 1. Mikell P. Groover. Industrial Robotics Technology Programming and Applications, McGraw Hill Co., Singapore.
- 2. Robotic Engineering by Richard D.Klafter, Prentice Hall

Reference books

- 1. Introduction to Robotics Saeed B.Niku, Prentice Hall
- 2. Introduction to Robotics John J. Craig, Addison Wesley

E-Resources & other digital Material:

1. 1.http://nptel.ac.in/downloads/112101098/