HVDC AND FACTS

Course Code	20EE4703C	Year	IV	Semester(s)	Ι
Course Category	Professional Elective -V	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisite s	EPGT&D and PE
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes						
Upon successful completion of the course, the student will be able to						
CO1	Understand the importance of FACTS controllers and HVDC in transmission system. (L2)					
CO2	Interpret the concept of AC and DC transmission systems. (L3)					
CO3	Identify the objectives of series and shunt compensation of power systems (L3)					
CO4	Analyse the performance of various compensations by using FACTS controllers. (L4)					
CO5	Analyze converter configurations used in HVDC transmission and evaluate the performance metrics. (L4)					
CO6	Ability to understand the concepts of FACTS controllers, HVDC transmission and submit a report.					

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	2						1	1					2	2
CO3	3					1						2	2	2
CO4		2									2		2	2
CO5		3										1	2	2
C06	3	3							3	3			2	2

	SYLLABUS					
Unit Contents						
No.		СО				
Ι	FACTS Fundamentals: Introduction to FACTS, Flow of Power in an AC System, Limitations on Loading Capability, Power Flow and Dynamic Stability Considerations of a Transmission Interconnection, Relative Importance of Controllable Parameters, Basic Types of FACTS Controllers, Basic Definitions of FACTS Controllers, Checklist of Possible Benefits from FACTS Technology.	CO1 CO2 CO6				
II	Shunt Compensation: Objectives of shunt compensation, methods of controllable VAR generation –Thyristor controlled Reactor (TCR), Thyristor Switched	CO1 CO3 CO4				

	Capacitor (TSC). Switching Converter Type Var Generators, Basic	CO6
	Operating Principles.	
	Series Compensation: Objectives of series compensation, Concept of	CO1
	Series Capacitive Compensation, Basic operation of Thyristor	CO3
	Switched Series Capacitors (TCSC), Basic operating principle of Static	CO4
	synchronous Series Compensator (SSSC).	CO6
III	Combined Compensators:	
	Unified power flow controller (UPFC) – Introduction, operating	
	principle.	
	Interline power flow controller (IPFC) – Introduction, operating	
	principle	
IV	HVDC Transmission: Introduction, Advantages of HVDC Systems	CO1
	over AC systems. Types of DC links, Layout of HVDC Converter	CO2
	station and various equipments.	CO5
		CO6
V	HVDC Converter Operation: Choice of converter configurations,	CO1
	Analysis of Graetz converter with (u<60) and without overlap,	CO5
	Equivalent circuit representation of rectifier and inverter	CO6
	configurations, Basic operating principle of 12-pulseconverter.	

Learning Resources

Text Books

1. Hingorani ,L.Gyugyi, 'Concepts and Technology of Flexible AC Transmission System',

- IEEE Press New York,1st Edition, 2000.
- 2. Padiyar, K.R., 'HVDC transmission systems', Wiley Eastern Ltd., 2nd Edition, 2010.

Reference Books

- 1. Jos Arrillaga, 'High voltage Direct Current Transmission' IET Power and Energy Series 29,2nd Edition,1998
- 2. Padiyar K.R., 'FACTS controllers for Transmission and Distribution systems' New Age International Publishers, 1st Edition, 2007.
- 3. Song, Y.H. and Allan T. Johns, 'Flexible AC Transmission Systems (FACTS)', Institution of Electrical Engineers Press, London,1st Edition, 1999.
- 4. Enrique Acha, Claudio R.Fuerte-Esqivel, Hugo Ambriz-Perez, Cesar Angeles-Camacho 'FACTS –Modeling and simulation in Power Networks' John Wiley & Sons, 1st Edition, 2002.

e-resources:

- 1. https://nptel.ac.in/courses/108107114
- 2. https://nptel.ac.in/courses/108104013