Course Code	20EE4702C	Year	IV	Semester(s)	Ι
Course Category	Professional Elective-IV	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Signals and Systems & Control Systems
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

DIGITAL CONTROL SYSTEMS

Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to					
CO1	Understand the fundamentals of digital control systems, sampling theorem (L2)					
CO2	Apply the basic knowledge of Z-transforms and assess the state of the digital control systems (L3)					
CO3	Apply various stability tools to check the performance and design of state feedback control systems (L3)					
CO4	Analyze various state space modeling techniques in digital control systems (L4)					
CO5	Examine the stability of discrete-time control systems and state feedback controllers via pole placement in z-plane (L4)					
CO6	Ability to do various problems in Digital control systems and submit a report.					

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

Strength of correlations (Singh, 2. Weardin, 1.20W)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3												2	1
CO3	3		3	2									2	1
CO4		3											2	1
CO5		3		2									2	1
CO6									3	2		3	2	1

SYLLABUS						
Unit	t Contents					
No.		СО				
Ι	Discrete Representation of Continuous Systems: Basics of Digital Control Systems, Discrete representation of continuous systems, advantages and disadvantages, examples, Impulse sampling and data hold – transfer function of Zero order hold, sampling theorem	CO1, CO2 CO6				

The Z-transform: Z transforms of some elementary functions, important					
theorems of the Z-transform, inverse Z-transform using partial fraction					
expansion method (simple poles and atleast one zero case), z-transform	CO4 &				
method for solving difference equations, the pulse transfer function.	CO6				
State space analysis: Concept of the state space method, State space	CO1.				
representations of discrete time systems, solving discrete time state space					
equations-Homogeneous case (z-transform approach), Controllability,					
Observability (Kalman's Test), principle of duality					
Stability analysis: Mapping between the s-plane and the z-plane-primary,	CO1,				
complementary strips and constant attenuation lines mapping, Stability					
Analysis of closed loop systems in the Z-plane, the Jury stability test,					
Stability analysis using bilinear transformation,					
State Feedback Controllers & Observers: Design via pole placement,					
necessary and sufficient condition (Ackerman's formula), State observers –	CO3,				
necessary and sufficient condition for state observation, full order state					
observer (Ackerman's formula)	CO6				
	 The Z-transform: Z transforms of some elementary functions, important theorems of the Z-transform, inverse Z-transform using partial fraction expansion method (simple poles and atleast one zero case), z-transform method for solving difference equations, the pulse transfer function. State space analysis: Concept of the state space method, State space equations-Homogeneous case (z-transform approach), Controllability, Observability (Kalman's Test), principle of duality Stability analysis: Mapping between the s-plane and the z-plane-primary, complementary strips and constant attenuation lines mapping, Stability Analysis of closed loop systems in the Z-plane, the Jury stability test, Stability analysis using bilinear transformation, State Feedback Controllers & Observers: Design via pole placement, necessary and sufficient condition for state observation, full order state observer (Ackerman's formula) 				

Learning Resources

1. K.OGATA ,Discrete-time Control Systems, prentice hall international, 2nd edition, 2015.

2. B.C.KUO, Digital Control Systems, Oxford University Press, 2nd edition, 2007.

Reference Books

Text Books

1. M.Gopal ,Digital Control Engineering, New Age International, 2nd edition,2014.

2. V.L.GEORGE, C.P.KURIAN, Digital Control systems, Cengage Learning, 2nd edition, 1998.

Web Links

1. https://nptel.ac.in/courses/108103008