Course Code	20EE4702A	Year	IV	Semester(s)	Ι	
Course Category	Professional Elective-IV	Branch	EEE	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	PSA	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

Course Outcomes							
Upon s	Upon successful completion of the course, the student will be able to						
CO1	CO1 Understand the various concepts and applications in real time control of power						
	systems. (L2)						
CO2	Apply the knowledge of power systems in real time computer control. (L3)						
CO3	Develop voltage stability analysis and application of ANN, PMU techniques in real						
	time control of power systems. (L3)						
CO4	Analyze the various real time functions in power systems. (L4)						
CO5	Learn various real time functions of power system and submit a report.						

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1: Low)

	Strength of correlations (5. Ingli, 2. Medium, 1. Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	2			1	1	1						1	3	2
CO3	3			2								2	3	2
CO4		3		1	1	1						2	3	2
CO5	3	3							3	3			3	2

SYLLABUS					
Unit	Thit Contents				
No.		CO			
Ι	State Estimation: Introduction, need of state estimation, block diagram of	CO 1			
	state estimation, static state estimations - theory of Least Square Estimation	CO 2			
	and Weighted Least Square Estimation methods for linear and nonlinear	CO 4			
	measurements, applications of state estimation.	CO 6			
II	Bad Data Processing: Bad data observability, pseudo measurements,	CO 1			
	treatment of bad data, bad data detection using chi-square test, bad data	CO 2			
identification and suppression of bad data.					
		CO 6			
III	Computer Control of Power Systems: Need for real time and computer	CO 1			
	control of power systems, operating states of a power system, Energy	CO 2			
	Control Centers, functions of ECC, hierarchical level of Energy Control	CO 4			
	Centers.				

	Supervisory control and Data Acquisition system - functions, functional block diagram, software and hardware components, applications of SCADA.	CO 6
IV	Voltage Stability: Concept of voltage stability, voltage instability, voltage collapse and voltage security, factors affecting voltage stability, measures to improve voltage stability, relation between voltage stability to rotor angle stability, voltage stability analysis using 'P-V'curves and 'Q-V' curves.	CO 1 CO 3 CO 4 CO 6
V	Application of ANN in Power System: Basic concepts and definitions, algorithms for state estimation, short term load forecasting. Concept of PMU-Block diagram of PMU-Applications of PMU in power systems.	CO 1 CO 3 CO 4 CO 6

Learning Resources

Text Books

5. Abhijit Chakrabarti, Sunita Halder, "Power System Analysis: Operation and Control",

2. Carson.W.Taylor, "Power systems voltage stability", McGraw-Hill, 1994.

Reference Books

PHI publications, 2008.

1. John Grainger and William Stevenson, "Power System Analysis", Tata McGraw Hill, 2017.

- 2. Hadi Saadat, "Power System Analysis", McGraw Hill, 2004.
- 3. I.J.Nagrath and D.P.Kothari, "Modern Power System Analysis", Tata McGraw Hill Publishing Company Ltd, 4th edition, 2011.

Web Links

1. https://nptel.ac.in/courses/108106022