POWER SYSTEM OPERATION AND CONTROL

Course Code	20EE4701A	Year	IV	Semester(s)	Ι
Course Category	Professional Elective-III	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	PSA
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes						
Upon successful completion of the course, the student will be able to						
Understand the basic concepts of economic load dispatch, hydrothermal						
scheduling, load frequency control, power factor improvement and voltage control						
(L2).						
Demonstrate the different types of hydrothermal scheduling, economic operation						
of power systems and load frequency control. (L3)						
Illustrate the concepts of power factor improvement and voltage control in power						
systems. (L3)						
Analyze the optimal operation of hydro and thermal power plants, single area and						
two area systems. (L4)						
Analyze the most economical power factor for constant KW& KVA loads, and						
various voltage control devices. (L4)						
Learn various power system operation concepts and submit a report.						

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

Strength of correlations (S.High, 2. Mechanin, 1.Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3					2							3	2
CO3	2							2				2	3	2
CO4		3				1							3	2
CO5		2						1				1	3	2
CO6	3	3							3	3			3	2

SYLLABUS					
Unit	Unit Contents				
No.		CO			
Ι	Economic Operation of Power Systems: Economic dispatch in Thermal Power Station, - Heat rate Curve - Cost Curve - Incremental fuel Cost and Incremental Production costs, Input-output characteristics, Optimum operation of thermal units without and with transmission losses Numerical problems - Loss Coefficients, General transmission line loss formula (Descriptive treatment only).	CO 1 CO 2 CO 4 CO 6			

II	Hydrothermal Scheduling: Optimal scheduling of hydrothermal	CO 1				
	system, hydroelectric power plant models, types of scheduling problems,	CO 2				
	Mathematical formulation and solution Technique of hydrothermal	CO 4				
	scheduling problem using gradient method.	CO 6				
III	Single area load frequency control: Necessity of keeping frequency	CO 1				
	constant, concept of control area, Block diagram representation of an	CO 2				
	isolated power system, Steady state analysis, Dynamic response,	CO 4				
	Proportional plus Integral control of single area and its block diagram	CO 6				
	representation.					
Ι	Two area load frequency control: Development of block diagram of a	CO 1				
V	two area system and its Static and dynamic responses, Tie-line bias	CO 2				
	control, comparison of load frequency control and Economic dispatch					
	control.	CO 4 CO 6				
V	Power factor and Voltage Control: Causes of low p.f, methods of					
v	improving p.f, static capacitor, synchronous condensers and phase	CO 1				
	advancers, most economical p.f. for constant KW load and constant	CO 3				
	KVA type loads.	CO 5				
	Importance of voltage control, shunt capacitors, series capacitors and					
	their location in the power system.	CO 6				
1	i men location in me power system.	1				

Learning Resources

- 1. I.J.Nagrath and D.P.Kothari, "Modern Power System Analysis", Tata McGraw Hill Publishing Company Ltd, 4th edition, 2011.
- 2. AbhijitChakrabarti, SunitaHalder, "Power System Analysis: Operation and Control", Prentice Hall of India3rd edition, 2010.

Reference Books

Text Books

- 1. O.I.Elgerd, "Electric Energy systems Theory", Tata McGraw-hill Publishing Company Ltd., 2nd edition,2004.
- 2. Allen J.Wood and bruceF.Wollenberg, "Power generation, operation and control", 2nd edition.
- 3. John Grainger and William Stevenson, "Power System Analysis", Tata McGraw Hill, 2017.
- 4. HadiSaadat, "Power System Analysis", McGraw Hill, 2004.

Web Links

3. https://nptel.ac.in/courses/108102047