MECHATRONICS

Course	20ME2702A	Year	IV	Semester	I
Code					
Course	Open	Branch		Course Type	Theory
Category:	Elective-4				Theory
Credits:	3	L-T-P	3 - 0 - 0	Prerequisites:	Basic electrical
				_	and electronics
Continuous	30	Semester End	70	Total Marks:	100
Evaluation:		Evaluation:			

Course Outcomes				
		Level		
Upon suc	ccessful completion of the course, the student will be able to			
CO1	Explain the concepts related to elements of Mechatronic systems.	L2		
CO2	Summarize the construction and working of sensors used in	L3		
	building mechatronic systems.	LS		
CO3	Illustrate various types of actuation systems and their components.	L3		
CO4	Develop mathematical models using building blocks and make use	L3		
	of these models to find the dynamic response.	LS		
CO5	Summarize the construction and working of closed loop	1.3		
	controllers, Micro processor and Micro controllers.	LJ		
CO6	Illustrate the features and applications of digital logic, PLC and of	L3		
	Fuzzy logic.	LS		

	Contribution of Course outcomes towards achievement of Program outcomes													
	& Strength of correlations (High:3, Medium: 2, Low:1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3									2		2	3	1
CO2	3									2		2	3	1
CO3	3		3							2		2	3	1
CO4	3	3			2					2		2	3	1
CO5	3				2					2		2	3	1
CO6	3				2					2		2	3	1

	Syllabus				
UNIT No.	Contents				
I	INTRODUCTION: Definition of Mechatronics, evolution of mechatronics, systems, measurement systems, control systems, mechatronic design process, traditional design and mechatronic design, applications of mechatronic systems, advantages and disadvantages of mechatronic systems. SENSORS: classification of sensors, basic working principles, Velocity sensors — Proximity and Range sensors, ultrasonic sensor, laser interferometer transducer, Hall Effect sensor, inductive proximity switch. Light sensors — Photodiodes, phototransistors, tactile sensors — PVDF tactile sensor, micro-switch and reed switch, Piezoelectric sensors, vision	CO1 CO2			

	sensor	
II	PNEUMATIC AND HYDRAULIC ACTUATION SYSTEMS: Actuation systems, Pneumatic and Hydraulic systems- constructional details of filter, lubricator, regulator, direction control valves, pressure control valves, flow control valves, actuators-linear and rotary. ELECTRICAL ACTUATION SYSTEMS: Electrical systems, Mechanical switches, solid state switches, solenoids, DC motors, AC motors, stepper motors. Characteristics of pneumatic, hydraulic, electrical actuators and their limitations.	CO1 CO3
III	BASIC SYSTEM MODELS: Mathematical models, mechanical system building blocks, electric system building blocks, fluid system building blocks, thermal system building blocks. DYNAMIC RESPONSES OF SYSTEMS: Transfer function, Modelling dynamic systems, first order and second order systems.	CO1 CO4
IV	CLOSED LOOP CONTROLLERS: Classification of control systems, feedback, closed loop and open loop systems, continuous and discrete processes, control modes, two step mode, proportional mode, derivative control, integral control, PID controller. MICROPROCESSOR AND MICRO CONTROLLER: Introduction, Architecture of a microprocessor (8085), Architecture of a Micro controller, Difference betweenmicroprocessor and a micro controller.	CO1 CO5
V	DIGITAL LOGIC: Digital logic, number systems, logic gates, Boolean algebra, Karnaugh maps, application of logic gates, sequential logic, transducer Signal Conditioning and devices for data conversion. PROGRAMMABLE LOGIC CONTROLLERS: Introduction, basic structure, input/output processing, programming, mnemonics, timers, internal relays and counters, shift register, master and jump controls. Data handling, Analog input/output, selection of a PLC. FUZZY LOGIC APPLICATIONS IN MECHATRONICS: Fuzzy logic systems, Fuzzy control, Uses of Fuzzy expert systems.	CO1 CO6

T .	-		
Learni	na W	'ACAIII	ഹവ
45.41	112 IN		

Text books:

- 1. Mechatronics Electronic Control Systems in Mechanical and Electrical Engineering, (3rd edition), by W Bolton, Pearson Education Press, 2005.
- 2. Mechatronics System Design, 5th Indian reprint, 2009, by Devdas shetty, Richard A. kolk, PWS Publishing Company

Reference books

- 1. Mechatronics Source Book, by Newton C Braga, Thomson Publications, Chennai.
- 2. Mechatronics, by N. Shanmugam, Anuradha Agencies Publishers.
- 3. Control sensors and actuators, by C.W.Desilva, Prentice Hall.
- 4. Design with Microprocessors for Mechanical Engineers, by Stiffler, A.K.McGraw- Hill(1992).

E-Resources & other digital Material:

1. https://onlinecourses.nptel.ac.in/noc22_me54/course