NON-CONVENTIONAL ENERGY RESOURCES

Course	20EE2701A	Year	IV	Semester	I
Code					
Course	OE-III	Branch	Common to	Course Type	Theory
Category			All		-
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester End	70	Total Marks	100
Internal		Evaluation			
Evaluation					

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	Understand the process of energy collection, quantification, storage, conversion and						
	applications of non-conventional sources. (L2)						
CO2	Apply the knowledge of energy conversion for harvesting energy from different						
	sources like light, heat, wind etc. (L3)						
CO3	Apply basic laws of physics for the production of energy from Solar, wind, ocean,						
	biomass, geothermal, fuel cell and hydrogen energy sources. (L3)						
CO4	Analyze the theory and designing wind mills, MHD, Fuel cells. (L4)						
CO5	Examine the performance of solar and wind generating units and economic aspects of						
	MHD biomass and Ocean energy sources. (L4)						
CO ₆	Ability to apply the various energy generation techniques and to measure the basic						
	parameters and submit a report.						

Cont	ribu	tion	Cont	ribut	ion (of C	ourse	Out	come	s tow	vards	achiev	ement of	Program
	Outcomes&Strength of correlations (3: High, 2: Moderate, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO ₂	3						3						2	1
CO3	3						3						2	1
CO4		3											2	1
CO5		3					3						2	1
CO6									3	2		3	2	1

	Syllabus						
Unit	Unit Contents						
No.		CO's					
I	PRINCIPLES OF SOLAR RADIATION: Role and potential of new and	CO1,					
	renewable source, the solar energy option, Environmental impact of						
	solar power, physics of the sun, the solar constant, extra-terrestrial and						
	terrestrial solar radiation, solar radiation on titled surface.						
	Measurement of Solar Radiation: Pyrometer, shading ring pyrheliometer,						
	sunshine recorder, schematic diagrams and principle of working.						
II	SOLAR ENERGY COLLECTION AND STORAGE:	CO1,					
	Solar Light Energy: Photovoltaic effect, characteristics of photovoltaic						
	cells, conversion efficiency, solar batteries and applications of	CO3,					
	photovoltaic energy conversion.	CO5,					

		Solar Heat Energy: Sensible, latent heat of Heat storage, solar ponds. Applications- solar heating/cooling technique, solar distillation and drying.	CO6							
	III	WIND ENERGY: Sources and potentials, horizontal and vertical axis	CO1,							
		windmills, performance characteristics, Betz criteria	CO2,							
		OCEAN ENERGY: OTEC, types of OTEC plants, mini-hydel power								
		plants	CO4,							
			CO6							
Ī	IV	BIO-MASS: Principles of Bio-Conversion, Anaerobic/aerobic	CO1,							
		digestion, types of Bio-gas digesters.	CO3,							
		GEOTHERMAL ENERGY: Resources, methods of harnessing the								
		energy.								
Ī	V	MHD Generators: Basic principles of MHD generator and Hall Effect,	CO1,							
		different types of MHD generators.								
		Fuel Cells: Introduction, principle of fuel cells, thermodynamic analysis								
		of fuel cells, types of fuel cells, fuel cell batteries, applications of fuel cells.								
- 1		COLD.								

Learning Resources

Text Books

- 1. G.D. Rai, Non-Conventional Energy Sources, Khanna publishers, 5th Ed., 2014.
- 2. S. Rao and B. B.Parulekar, Energy Technology- Non conventional, Renewable and Conventional, Khanna Pub, 3rd Ed., 1999.

Reference Books

- 1. Ashok V Desai, Non-Conventional Energy, New age publishers, 1st Ed., 1990.
- 2. B.H.Khan, Non-Conventional Energy Sources, Tata Mc Graw-hill Publishing Company, 2nd Ed., 2013.
- 3. B.T. Nijaguna, Biogas Technology, New Age International Pub, First edition 2002.
- 4. Tiwari and Ghosal, Renewable Energy resources, Narosa, 2nd Ed., 2005

Web links

- 1. https://www.coursera.org/learn/renewable-energy-technology-fundamentals
- 2. https://nptel.ac.in/courses/121106014