EMI/EMC

Course Code	20EC6701	Year	IV	Semester	I
Course Category	Honors	Branch	ECE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	
Continuous		Semester		Total	
Internal	30	End	70	Total Marks:	100
Evaluation:		Evaluation:		Marks:	

	Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to					
CO1	Familiarize with the fundamentals in the field of EMI / EMC (L2).					
CO2	Analyze various EMI sources and measurements(L4)					
CO3	Apply various techniques for EM radiation measurements (L3)					
CO4	Apply various Conducted Interference measurement for EM radiation (L3)					

Mapping of course outcom	es with Program outcome	es (CO/ PO/PSO Matrix)
NT / 1 XX7 1 1 /	0 N f 1' 1 .'	2.04

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO

Tiverage value indicates course correlation strength with mapped 10														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2						2			2		2		2
CO2		3					3			3		3		3
CO3	3						3			3				2
CO4	2						2			2				
Avg.	2	3					3			3		3		2

Syllabus						
Unit No.	Contents	Mapped CO				
1	Introduction : History and concept of EMI, Definitions of EMI/EMC, Electromagnetic environment, Practical experiences and concerns, frequency spectrum conservation, mechanisms of EMI generation, EMI testing, Methods of elimination of EMI and Biological effects of EMI	CO1, CO2				

2	Natural and manmade sources of EMI/EMC : Sources of Electromagnetic noise, typical noise paths, modes of noise coupling, designing for EM compatibility, lightening discharge, electro static discharge (ESD), electromagnetic pulse (EMP).	CO1, CO2
	EMI from Apparatus / Circuits and open area test sides:	
3	Electromagnetic emissions, noise form relays and switches, non-linearities in circuits, passive inter modulation, transients in power supply lines, EMI from power electronic equipment,	CO1,CO3
	EMI as combination of radiation and conduction. Open area test sides: OATS measurements, measurement precautions.	
	Radiated Interference Measurements: anechoic chamber,	CO1,CO3
4	TEM cell, reverberating chamber, GTEM cell, comparison of test facilities.	
	Conducted Interference Measurement: Characterization of	
5	conduction currents / voltages, conducted EM noise and power	CO1,CO3,
3	line, conducted EMI from equipment, immunity to conducted	CO4
	EMI, characteristics of EMI filters and power line filter design.	

Text Books

- 1. V.P.Kodali, Engineering Electromagnetic Compatibility, 2nd Ed., IEEE Press, 2000
- 2. Clayton R Paul, Introduction to Electromagnetic Compatibility, John Wiley Sons, 2010

Reference Books

1. Electromagnetic Interference and Compatibility IMPACT series, IIT Delhi

e- Resources

- 1. https://en.wikipedia.org/wiki/Electromagneticompatibility
- 2. https://www.element.com/nucleus/2017/whats-the-difference-emc-vs-emi
