LOW POWER VLSI DESIGN

Course	20EC6701A	Year	IV	Semester	Ι
Code					
Course	Honors	Branch	ECE	Course Type	Theory
Category					
Credits	4	L-T-P	3-1-0	Prerequisites	Digital Design
Continuous	30	Semester	70	Total Marks	100
Internal		End			
Evaluation		Evaluation			

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	Understand the concepts of low power VLSI(L2)						
CO2	Apply different circuit techniques to manage the leakage currents(L3)						
CO3	Apply the knowledge of architectural approaches. (L3)						
CO4	Analyze and Design Low-Voltage Low-Power combinational circuits. (L4)						
CO5	Analyze the functionality of Low- voltage low -power memories(L4)						

Mappin	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
Note: 1-	Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation													
*	* - Average value indicates course correlation strength with mapped PO													
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS
COS	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	2				2					2			2	
CO2	2		2		2					2			2	
CO3	2				2					2			2	
CO4		3			3					3			3	
CO5		2			2					2			2	
Averag														
e*														
(Roun	2	3	2		2					2			2	
ded to	2	5	Z		2					2				
nearest														
integer														

S.NO	SYLLABUS	Mapped COS
Ι	Low power CMOS VLSI design : Introduction, sources of power dissipation, static power dissipation, active power dissipation. Circuit techniques for low power design: Introduction, designing for low power, circuit techniques for leakage power reduction	CO1,CO2
II	Low-Power Design Approaches: Low-Power Design through Voltage Scaling: VTCMOS circuits, MTCMOS circuits, Architectural Level Approach-Pipelining and Parallel Processing Approaches	CO1,CO3

	Low voltage low power adders:			
III	Introduction, standard adder cells, CMOS adder's architectures, low voltage low power design techniques, current mode adders.	CO1,CO4		
	Low voltage low power multipliers:			
	Introduction, Overview of Multiplication, Types of Multiplier			
IV	Architectures, Braun Multiplier, Baugh- Wooley Multiplier, Booth	CO1,CO4		
	Multiplier.			
	Low-Voltage Low-Power Memories: Basics of ROM, Low-Power			
	ROM Technology, Future Trend and Development of ROMs, Basics of			
V	SRAM, Memory Cell, Precharge and Equalization Circuit, Low Power	CO1,CO5		
	SRAM Technologies, Basics of DRAM, Self-Refresh Circuit, Future			
	Trend and Development of DRAM.			
	Learning Resources			
ТЕХТ	BOOK			
1.	Kiat Seng Yeo, Kaushik Roy (2012), Low Voltage, Low Power VLSI Sub-	systems,		
	TATA McGraw-Hill			
2.	Sung-Mo Kang, Yusuf Leblebici, CMOS Digital Integrated Circuits – Ana	lysis and		
	Design, TMH, 2011.			
	ences:			
1.	1.Yeo Rofail, Gohl (2009), CMOS/BiCMOS ULSI Low Voltage, Low Pow	ver, Pearson		
	Education Asia 1 st Indian reprint.			
2.	2. Anantha P. Chandrakasan, Robert W. Brodersen, Low Power Digital CMOS			
	Design, Springer Science			
3.	3.Jan M. Rabaey, Anantha P. Chandrakasan, BorivojeNikolic, (2011) Digi	tal		
	Integrated Circuits: a Design Perspective, Pearson Education, 2 nd Edition.			
	ources:			
1.	1.https://www.nptelvideos.com/course.php?id=422			
2.	2.http://leda.elfak.ni.ac.rs/education/projektovanjeVLSI/predavanja/10%20)		
	Low%20Power%20Design%20in%20VLSI.pdf			
	3.https://www.egr.msu.edu/classes/ece410/salem/files/s16/lectures/Ch2_S2			