FUZZY LOGIC

Course Code	20EC4701E	Year	IV	Semester	Ι	
Course	Program	Branch	ECE	Course Type	Theory	
Category	Elective III					
Credits	3	L-T-P	3-0-0	Prerequisites	Linear, algebra, Statistics and Probability	
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100	

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Understand the fundamentals of Fuzzy logic and its applications	L2			
CO2	Apply the concepts of fuzzy logic to solve the real world problems	L3			
CO3	Design fuzzy systems for various engineering applications	L3			
CO4	Analyse the performance of fuzzy systems	L4			

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average value indicates course correlation strength with mapped PO														
COs	PO	РО	PO1	PO1	PO1	PSO	PSO							
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	2				2					2				
CO2	3				3					3			3	3
CO3	2				2					2			2	
CO4		2			2					2				2
Average *														
(Rounde d to nearest	3	2			2					2			3	3
integer)														

	Syllabus					
Unit No.	Contents					
Ι	Introduction Different faces of imprecision - inexactness, Ambiguity, Undecidability, Fuzzyness and certainty, Fuzzy sets and crisp sets, Probability and fuzzy logic, Fuzzy control and knowledge based systems	CO1,CO2				
II	Fuzzy Sets and Operations Impressive concepts, Fuzzyness and imprecision, Properties of fuzzy sets, Fuzzy representation, Conventional set operations, Intersection of Fuzzy sets, Union of fuzzy sets, the complement of fuzzy sets	CO1,CO2				
III	Fuzzy Reasoning Linguistic variables, Fuzzy propositions, Fuzzy compositional rules of inference-the-Min-Max rules implications and fuzzy additive rules of implication, Methods of decompositions and defuzzyfication -composite moments, composite maximum average of maximum values and centre of maximums	CO1,CO2				

IV	Methodology of Fuzzy Systems Direct and Indirect methods with single and multiple experts, Construction from sample data - Least square method, adaptive fuzzy controllers - membership function tuning using gradient decent	CO1,CO3, CO4
v	Applications Fuzzy controllers - a fuzzy steam turbine controller, DC motor speed control, Fuzzy decisions making, neuro fuzzy systems, fuzzy genetic algorithms	CO1,CO3, CO4

Learning Resources

Text Books

Zimmermann H.J., 'Fuzzy Set Theory - and its Applications', Springer, 4th Ed., 2007
Timothy J. Ross, 'Fuzzy Logic with Engineering Applications', Wiley Publications, 4th Ed., 2016

References

1. John Yen, Reza Langari, 'Fuzzy Logic, Intelligence, Control & Information', Pearson Education Inc., India, 2007

2. Zdenko Kovacic, Stjepan Bogdan, 'Fuzzy Controller Design Theory and Applications', CRC Press, 1st Ed., 2006

3. Riza C. Berkaan, Sheldon L. Trubatch, 'Fuzzy Systems Design Principles – Building Fuzzy IF THEN Rule Based', IEEE Press, 1997

4. George J Klir and Bo Yuan, 'Fuzzy Sets and Fuzzy Logic: Theory and A: Theory and Applications', Pearson, 2015

5. M. Mitchell, 'Introduction to Genetic Algorithms', Indian Reprint, MIT press Cambridge, 2^{nd} Ed, 2014

e-Resources

1. https://onlinecourses.nptel.ac.in/noc22_ge04/preview

2. https://eopcw.com/find/course/428/courses

3. https://www.wiley.com//legacy/wileychi/fuzzylogic/