Advanced Digital Design								
Course Code	20EC4701B	Year	IV	Semester	Ι			
Course Category	PE-III	Branch	ECE	Course Type	Theory			
Credits	3	L-T-P	3-0-0	Prerequisites	Logic Gates, Boolean Algebra & K-Maps			
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100			

Course Outcomes					
Upon	successful completion of the course, the student will be able to				
CO1	Perform Binary arithmetic operations using Complements & Work effectively				
	with IEEE FP numbers (L3).				
CO2	Design Combinational circuits upto subsystem level preferably using functional				
	blocks and gates wherever necessary based on the specifications (L5).				
CO3	Analyze the timing behavior, delays, and hazards in combinational circuits and				
	fix hazards due to single-bit time-varying binary signals (L4).				
CO4	Design and Analyze Sequential circuits using a state machine design approach				
	upto the introductory subsystem level based on the specifications (L5).				
~~					

CO5 Fix set-up and hold violations of Sequential circuits (L4).
--

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2			3						3				2	
CO3		2							3				2	
CO4		3	3						3				2	
CO5			2						2				1	
Average* (Rounded to nearest integer)	3	3	3						3				2	

Syllabus						
Unit No.	Contents	Mapped CO				
Ι	PROCESSOR ARITHMETIC: Numbers with different bases, Two's complement number system - Arithmetic operations. Fixed-point number system, Floating-point number system - IEEE 754 format.	CO1				
II	COMBINATIONAL CIRCUITS : CMOS logic design, Combinational circuits, Timing hazards, Basic functional blocks - Decoders, Encoders, Multiplexers,	CO2, CO3				

[
	Parity Circuits, Comparators, Adders, Subtractors. Carry-						
	look-ahead adder – timing analysis.						
III	SEQUENTIAL LOGIC: Latches and flip-flops, Sequential						
	logic circuits - timing analysis (set-up and hold times). State	CO3, CO4					
	machines - Mealy & Moore machines, FSM design using D						
	Flip-Flops, Synchronizers and meta-stability and basics of						
	clock domain crossing. FSM applications-Vending Machine,						
	Traffic light controller.						
	SUBSYSTEM DESIGN USING FUNCTIONAL BLOCKS - I:						
	Larger combinational designs involving basic combinational						
IV	functional blocks - ALU, 4-bit combinational Multiplier,	CO2					
	arrel shifter, Dual Priority Encoder and Cascading						
	Comparators.						
V	SUBSYSTEM DESIGN USING FUNCTIONAL BLOCKS - II:						
	Design of larger logical blocks involving						
	sequential/combinational functional blocks - Pattern	CO2, CO4					
	(sequence) generator/detector(s), Programmable up-down						
	counters, Programmable FIFO controllers.						
·	, ,						

Learning Resources

Text Books

1. John F. Wakerly, "Digital Design", 3rd Ed., PH, 2002 & 4th Ed., PH, 2006. **Pafaranza Baaks**

Reference Books

1. Randy H. Katz and Gaetanao Boriello, "Contemporary Logic Design" 2nd Ed., PH, 2005.

2. Charles Roth, Jr., Larry Kinney, Fundamentals of Logic Design, 7/e, Cengage Learning, India, 2013.

e- Resources & other digital material

1. http://www.ece.ubc.ca/~saifz/eece256.html

2. http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT%20Guwahati/digital_circuit /frame/index.html