OPERATIONS RESEARCH

Course code	20ME2701A	Year	IV	Semester	Ι
Course category	Open Elective	Branch	Common to all	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	-
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes

	Course Outcomes				
Upon successful completion of the course, the student will be able to					
CO1	Understand the basics of linear programming, transportation, queueing, sequencing of jobs, replacement, inventory and simulation problems	L2			
CO2	Apply linear programming, transportation and assignment models to solve real life problems	L3			
CO3	Apply Sequencing, queueing, Game and Replacement theories to solve problems	L3			
CO4	Apply knowledge of inventory control and simulation to solve practical industrial problems	L3			

	Contribution of Course Outcomes towards achievement of Program Outcomes& Strength of correlations (3: High, 2: Moderate, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3								3	2		3	2
CO2	3	3								3	2		3	2
CO3	3	3								3	2		3	2
CO4	3	3								3	2		3	2

	Syllabus	
UNIT No.	Contents	Mapped CO
I	 Introduction to Operations Research: History, definition, operations research models, phases of implementing operations research in practice, applications. Linear Programming: Introduction, formulation, graphical solution, simplex method, artificial variable techniques – Big M and two-phase methods, duality principle. 	CO1 CO2
п	Transportation : Formulation, initial feasible solution, optimal solution – MODI method, unbalanced transportation problems, degeneracy in transportation problems. Assignment : Formulation, optimal solution, Hungarian method, travelling salesman problem.	CO1 CO2
III	Queuing theory: Introduction, Kendall's notation, classification of	CO1

	queuing models, single server and multi-server models, Poisson arrival, exponential service, infinite population Sequencing : Introduction, assumptions, processing n-jobs through two machines, n-jobs through three machines, and graphic solution for processing 2 jobs through n machines with different order of sequence.	CO3
IV	Game Theory : Introduction, game with pure strategies, game with mixed strategies, dominance principle, graphical method for 2xn and mx2 games. Replacement Theory : Introduction, replacement of items that deteriorate with time - value of money unchanging and changing, simple probabilistic model for replacement of items that fail completely	CO1 CO3
V	Inventory control : Introduction, inventory costs, Economic Order Quantity (EOQ)Demand rate Uniform and replenishment rate infinite, demand rate non-uniform replenishment rate infinite, Demand rate uniform, models with and without shortages, inventory model with single price break. Simulation : Definition, Types of simulation models, phases of simulation, applications of simulation	CO1 CO4

Learning Resource

Text b	ooks:		
1.	Operations Research, by S.D.Sharma, Kedarnath & Ramnath publications (15th edition),2013.		
2.	Introduction to Operations Research, by Taha, Pearson Education, New Delhi, (8th edition), 2008		
Refer	ence books		
1.	Operations Research, (4th edition) by A.M .Natarajan, P. Balasubramani,		
	ATamilarasi, Pearson Education, New Delhi, 2009.		
2.	Operations Research, (2nd edition) by R.Pannerselvam, 2009, PHI Publications, Noida		
3.	Operations Research, (2nd edition) by Wagner, 2007, PHI Publications, Noida		
4.	Operation Research, (4th edition) by J.K.Sharma, 2009, MacMilan publishers, india		
	Ltd. New Delhi.		
E-Res	ources & other digital Material:		
1. http	·//nptel.ac.in/courses/112106134/		

1. http://nptel.ac.in/courses/112106134/ 2. http://nptel.ac.in/courses/112106131/

ſ