Course Code:	20CS4702D	Year:	IV	Semester:	Ι	
Course Category:	PEC	Branch:	CSE	Course Type:	Theory	
Credits:	3	L-T-P:	3-0-0	Pre requisites:	Probability and Statistics	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

Reinforcement Learning

Course Outcomes

Upon successful completion of the course, the student will be able to:

CO1	Understand the concepts of Reinforcement Learning to solve real world problems.	L2
CO2	Apply Markov Decision Process, Monte Carlo, Temporal Difference methods for policy evaluation and prediction	L3
CO3	Analyze the Tabular Methods and On-policy Prediction with Approximation.	L4
CO4	Analyze a given problem and use the suitable Reinforcement Techniques.	L4

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3													
CO 2	3													1
CO 3		2				1								
CO 4		2							1	1		1		

Syllabus							
Course Content							
UNIT-1	Reinforcement Learning Primitives: Introduction and Basics of RL, Defining RL Framework, Probability Basics: Probability Axioms, Random Variables, Probability Mass Function, Probability Density Function, Introduction to Agents, Intelligent Agents – Problem Solving – Searching, Logical Agents.	CO1,CO4					
UNIT-2	Finite Markov Decision Process: Basics, The Agent-Environment Interface, Goals and Rewards, Returns and Episodes, Unified Notation for Episodic and Continuing Tasks, Policies and Value Functions, Optimal Policies and optimal Value Functions.	CO1, CO2,CO4					
UNIT-3	Dynamic Programming : Definition, Policy Evaluation (Prediction), Policy Improvement, Policy Iteration, Value Iteration, Asynchronous dynamic programming, Generalized Policy Iteration, Efficiency of dynamic programming. Monte Carlo Methods: Definition, Monte Carlo Prediction, Monte Carlo Estimation of Action values, Monte Carlo Control, Monte Carlo Control without Exploring Starts.	CO1, CO2,CO4					
UNIT-4	MONTECARLOMETHODSFORMODELFREEPREDICTION AND CONTROL AND TD METHODS:Temporal-DifferenceLearning:TDPrediction, Advantages of TDPredictionMethods, Optimality of TD(0), Sarsa:On-policy TDcontrol, Q-learningOff-policy TD control.	CO1, CO2, CO4					
UNIT-5	 ELIGIBILITY TRACES AND REINFORCE Planning and Learning with Tabular Methods: Models and Planning, Dyna: Integrated Planning, acting and learning, Prioritized Sweeping, Real-time dynamic programming, Planning at decision time, Heuristic search, Rollout algorithms, Monte carlo tree search. 	CO1, CO3, CO4					
Learning Resources							
Text Books	 Richard S. Sutton and Andrew G. Barto, "Reinforcement learning: An Introduction", Second Edition, MIT Press, 2019. Russell, Stuart J., and Peter Norvig. "Artificial intelligence: a modern approach.", Pearson 						
Referen ce Books	1. Alberto Leon-Garcia, "Probability, Statistics, and Random Processes Engineering", 3rd Edition,	for Electrical					
e- Resource s & other	 <u>https://www.udemy.com/course/artificial-intelligence-az/</u> <u>https://nptel.ac.in/courses/106106143</u> <u>https://www.coursera.org/specializations/reinforcement-learning</u> 						