Course Code	20CS4701A	Year	IV	Semester	Ι		
Course Category	PEC	Branch	CSE	Course Type	Theory		
Credits	3	L-T-P	3-0-0	Prerequisites	Machine Learning		
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100		

Deep Learning

COURSE OUTCOMES

Upon successful completion of the course, the student will be able to					
CO1	Understand the fundamental concepts of Deep learning.	L2			
CO2	Apply concepts of deep networks to analyze various architectures.	L3			
CO3	Apply deep learning models to build applications in various domains.	L3			
CO4	Analyze the given problem and apply suitable deep learning algorithm.	L4			

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2										1			2	
CO3	3									1				
CO4		3							1	1		1		

	SYLLABUS					
UNIT NO.	CONTENTS	MAPPED CO				
I	Fundamentals of Deep Networks – Defining Deep Learning, What Is Deep Learning? Common Architectural Principles of Deep Networks: Parameters, Layers, Activation Functions, Loss Functions, Hyper parameters.	CO1				
п	Building Blocks of Deep Networks – Restricted Boltzmann Machine, Autoencoders, Variational Autoencoders. Major Architectures of Deep Networks: Unsupervised pretrained networks, Deep Belief Networks, Generative Adversarial Networks.	CO1, CO2, CO4				
ш	Convolutional Neural Networks (CNNs) – The Convolution Operation, Motivation, Pooling, Variants of the Basic Convolution Function, Structured Outputs, Data Types, Efficient Convolution Algorithms, Random or Unsupervised Features, The Neuro-scientific Basis for Convolutional Networks, Applications.	CO1, CO3, CO4				
IV	Sequence Modeling – Recurrent and Recursive Nets – Unfolding Computational Graphs, Recurrent Neural Networks, Encoder-Decoder Sequence-to-Sequence Architectures, Deep Recurrent Networks, Recursive Neural Networks, The Long Short-Term Memory and Other Gated RNNs, Applications.	CO1, CO3, CO4				
v	Deep Learning applications – Computer Vision, Speech Recognition, Natural Language Processing, Other Applications.	CO1, CO3, CO4				

Learning Resources

Text books

1. Josh Patterson and Adam Gibson, –Deep learning: A practitioner's approach^I, O'Reilly Media, First Edition, 2017.

2. Ian Goodfellow, Yoshua Bengio, Aaron Courville, -Deep Learningl, MIT Press, 2016.

3. Deep learning, Amit Kumar Das, Saptarsi Goswami, Pabitra Mitra, Amlan Chakrabarti,

First Edition,2021, Pearson.

References

1. Fundamentals of Deep Learning, Designing next-generation machine intelligence algorithms, Nikhil Buduma, O'Reilly, Shroff Publishers, 2019.

2. Deep learning Cook Book, Practical recipes to get started Quickly, Douwe Osinga, O'Reilly, Shroff Publishers, 2019.

3. Deep learning Illustrated A Visual Interactive Guide to Artificial Intelligence, Jon Krohn, Grant Beyleveld, Aglae Bassens, First Edition, 2020, Pearson.

e-Resources and other Digital Material

1. https://www.deeplearningbook.org/S

- 2. https://onlinecourses.nptel.ac.in/noc20_cs62/preview
- 3. https://www.udemy.com/share/101X6W/ (or) https://www.udemy.com/course/deep-learning-advanced-nlp/

4. https://www.youtube.com/watch?v=5tvmMX8r_OM&list=PLtBw6njQRU-

rwp5_7C0oIVt26ZgjG9NI