POWER SYSTEMS ANALYSIS

Course Code	20EE3603	Year	III	Semester	II
Course Category	Professional core	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	EPG T&D
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to					
	Understand the single line diagram of the power system, types of faults, different load flow					
	techniques and stability. (L2)					
CO2	Apply the knowledge of per unit quantities and impedance diagram to calculate the fault					
02	current.(L3)					
CO3	Apply iterative techniques for load flow analysis.(L3)					
CO4	Analyzevarious load flow techniques and Power system Stability(L4)					
CO5	Analyzesymmetrical and unsymmetrical faults that occur in a power system.(L4)					
CO6	Submit a report on per unit quantities, faults occurring in power system, load flow studies and					
	power system stability.					

C	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3												2	1
CO3	3											1	2	1
CO4		3		3				1					2	1
CO5		3				1							2	1
CO6					1		1		3	3	1			

	SYLLABUS					
Unit	Unit Contents					
No.		СО				
	Per unit Representation	CO1				
Ι	Single line diagram, per unit quantities, per unit impedance diagram of a					
	power system, Symmetrical fault analysis: Short circuit current and MVA					
	calculations, fault levels, application of series reactors, Numerical problems.	CO6				
	Power Flow Studies-I					
	Y bus formation by direct inspection method. Necessity of power flow					
II	studies - Data for power flow studies-Derivation of static load flow	CO1 CO3				
	equations- Load flow solutions using Gauss Seidel Method, acceleration	CO4				
	factor, algorithm and flowchart, Numerical Problems (max. 3-buses and					
	one iteration only), DC load Flow.					

III	Power Flow Studies-II Newton Raphson method in polar co-ordinates form, Derivation of Jacobian elements, algorithm and flowchart, Numerical Problems (max. 3- buses and one iteration only).	CO1 CO3 CO4 CO6
IV	Short Circuit Analysis Necessity of fault studies, Types of faults, symmetrical components - positive, negative and zero sequence components of voltage, current and impedance. Sequence Networks-positive, negative and zero sequence networks,Unsymmetrical fault analysis-LG, LL, LLG faults with and without fault impedance - Numerical Problems.	CO1 CO2 CO5 CO6
V	Stability Analysis Concepts of steady state, dynamic and transient stabilities - transfer reactance, synchronizing power coefficient, power angle curve - determination of steady state stability and methods to improve steady state stability - Derivation of swing equation - equal area criterion to sudden change in mechanical input, effect of clearing time on stability - Methods to improve transient stability, Numerical Problems.	CO1 CO4 CO6

Learning Resources

- 1. D.P.Kothari and I.J.Nagrath, Modern power system analysis, MH publications, 4thEdition, 2011.
- 2. J.J.Grainger & W.D.Stevenson. Gary W. Chang, Power system analysis, MH publications, 2016.

Reference Books:

Text Books:

- 1. T.K.Nagsarkar M.S.Sukhija, Power System Analysis, OXFORD press, 2nd Edition, 2016
- 2. A.R.Bergen, Power System Analysis, Prentice Hall, India, 2nd Edition, 2002.
- 3. J Duncan Glover, M.S.Sarma, T.J.Overbye, Power System Analysis and design, Cengage Learning Publications, 5th Edition, 2011.

4. Hadi Saadat, Power system analysis, MH publications, 2nd Edition, 2009.

E-Resources:

https://archive.nptel.ac.in/courses/108/105/108105067/ https://archive.nptel.ac.in/courses/108/104/108104051/