DIGITAL SIGNAL PROCESSING LAB

Course Code	20EC3651	Year	III	Semester	II		
Course	Program	Branch	ECE	Course Type	Lab		
Category	Core						
Credits	1.5	L-T-P	0-0-3	Prerequisites	Signals and		
					Systems		
Continuous	15	Semester	35	Total Marks:	50		
Internal		End					
Evaluation:		Evaluation:					

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	Examine the frequency response and impulse response of discrete-time LTI systems						
	(L3).						
CO2	Interpret discrete-time signals using DFT & FFT (L3).						
CO3	Design IIR and FIR digital filters for real time DSP applications (L6)						
CO4	Apply Multirate signal processing concepts to various applications (L3)						
CO5	Make an effective report of the experiments						

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)Note: 1- Weak correlation2-Medium correlation3-Strong correlation

Note. 1- weak contration 2-weatann contration 5-strong contration														
* - /	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3							1	1	1		1	2	1
CO2	3							1	1	1		1	2	1
CO3			3					1	2	1		2	2	1
CO4	2							1	2	1		1	2	1
CO5								1	3	3		1	2	1
Average*														
(Rounded	3		3					1	2	1		1	2	1
to nearest	3		5					1	Z	1		1	2	1
integer)														

---C-II-h

Syllabus					
Expt.	Mapped CO				
No.					
Part A – Using MATLAB					
Ι	Frequency response of a system described by a difference	CO1, CO5			
	equation. (First order and Second order Systems)				
II	Implementation of discrete time systems in time domain.	CO1, CO5			
	(First order and Second order Systems)				
III	DFT & IDFT of the given sequences. (4-Point or 8-point	CO2, CO5			
	sequences)				
IV	Properties of DFT (Linearity, Time reversal etc.)	CO2, CO5			
V	Fast Fourier Transform (4-Point or 8-point sequences)	CO2, CO5			
VI	Design of IIR Low Pass filter using Butterworth and Chebyshev	CO3, CO5			
	approximations (For the given specifications)				
VII	Design of IIR High Pass filter using Butterworth and Chebyshev	CO3, CO5			
	approximations. (For the given specifications)				

VIII	CO3, CO5					
IX	IX Design of FIR High Pass filter using window technique. (For the given specifications)					
Х	Implementation of Interpolation and Decimation. (Factor 2 or 3)	CO4, CO5				
	Part B – Using Code Composer Studio					
XI	Linear convolution of two sequences. (4-Point or 5-point sequences)	CO1, CO5				
XII	Circular convolution of two sequences. (4-Point or 8-point sequences)	CO2, CO5				
XIII	Generation of Sine wave & Square wave.	CO2, CO5				

Learning Resources

Text Books

1. J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, 4th Ed., Pearson Education, 2007.

2. A.V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing, 3rd Ed. PHI,2009.

Reference Books

1. Lonnie C Ludeman, Fundamentals of Digital Signal Processing - John Wiley & Sons, 2003 2. Sanjit K Mitra, Digital Signal Processing "A - Computer Based Approach" - Tata Mc Graw Hill 2nd Ed., 2003

3. Lawrence R Rabiner & Bernard Gold, Theory and Application of Digital Signal Processing - Prentice Hall.

e- Resources & other digital material

1. http://www.nptel.iitm.ac.in/

2. http://www.ee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.html

3. http://www.ece.cmu.edu/~ee791

4. http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html