ELECTRICAL DRIVES

Course Code	20EE4601B	Year	III	Semester(s)	П	
Course Category	Professional Elective-II	Branch	EEE	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	Power Electronics, Electrical Machines-1, Electrical Machines-2	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	Understand the basic Power Converters to drives Classification of Electrical						
	Drives, choice of electric drives and selection of drives ,braking and motoring						
	operations of converters fed to drives.(L2)						
CO2	Apply the basic knowledge to obtain the operation, multi-quadrant operation, speed						
	torque characteristics ,applications of Rectifiers and Choppers fed to DC drives						
	,Various parts of Electric Drive,.(L3)						
CO3	Apply the basic knowledge to obtain the operation, speed torque characteristics,						
	applications for Inverters and AC to AC converters fed to AC drives, fundamental						
	torque equation. (L3)						
CO4	Analyze the concepts of Rectifiers and Choppers fed to DC drives.(L4)						
CO5	Analyze the concepts of Inverters and AC to AC converters fed to AC drives,						
	fundamental torque equation. (L4)						
CO6	Submit a report in Fundamentals, Rectifiers, Choppers, Inverters and AC to AC						
	converters of Electric Drives.						

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3					1	1						2	1
CO3	3					1	1						2	1
CO4		2											2	1
CO5		2											2	1
CO6						3	3		3	3		3	2	1

	SYLLABUS					
Unit	Unit Contents					
No.		СО				
Ι	Fundamentals of Electric Drives	CO1				
	Introduction of Electric drives and various parts, Classification of Electrical	CO2				
	Drives, choice of electric drives and selection of drives for various	CO3				

	applications; fundamental torque equation, multi-quadrant operation of a	CO5			
	motor driving hoist, Equivalent values of Drive Parameters.				
Π	DC Drives-Rectifiers Controlled rectifier fed dc drives, single phase half controlled rectifier control, single phase fully controlled rectifier control of dc separately excited motor, rectifier control of dc series motor. Three phase half controlled rectifier control, Three phase fully controlled rectifier control of dc separately excited motor, multi quadrant operation of separately excited motor fed from fully controlled rectifier.	CO1 CO2 CO4 CO6			
III	DC Drives- Choppers Buck and Boost converter fed DC Drives, types of braking, Control of chopper fed dc separately excited, series motor and speed-torque characteristics. Converter ratings and closed loop control.	CO1 CO2 CO4 CO6			
IV	AC Drives Stator voltage control, variable frequency control from voltage sources, VSI fed induction motor drives, rotor resistance control, slip power recovery schemes-static scherbius, static Kramer drive.	CO1 CO3 CO5 CO6			
V	Essential Applications of Electrical Drives Solar powered Pump Drives, Battery Powered Electrical Vehicles, Drive requirements for machine tools, Brushless DC motor drive for Servo Applications. AC Traction using converter controlled dc Motors and DC Traction Using Chopper controlled dc Motors.(Block diagram only-no problems)	CO1 CO2 CO3 CO6			

Learning Resources

Text Books

1. G K Dubey ,Fundamentals of Electric Drives, Narosa Publications,2nd edition,2011

2. R.Krishnan, Electric Motor & Drives: Modeling, Analysis and Control, Prentice Hall of India, 2nd edition, 2001.

Reference Books

- 1. G.K. Dubey, Power Semiconductor Controlled Drives, Alpha Science International Ltd. 1st edition,2002.
- 2. Bimal K. Bose, Modern Power Electronics and AC Drives, Prentice-hall of India Pvt. Ltd,2nd edition, 2005.
- 3. P.S.Bhimbra, 'PowerElectronics', Khanna Publications, 5th edition, 2018.
- 4. Vedam Subramanyam, Electric Drives Concepts and Applications, Tata McGraw Hill Education Private Limited, 2nd edition, 2011

Web Links

1. https://nptel.ac.in/courses/108104140