DISTIBUTION SYSTEM PLANNING & AUTOMATION

Course Code	20EE4601A	Year	III	Semester(s)	II
Course Category	Professional Elective -II	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Electrical Power Generation, Transmission and Distribution
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes						
Upon suc	Upon successful completion of the course, the student will be able to					
CO1	Understand the concepts of distribution system planning and automation. (L2)					
CO2	Apply the knowledge of distribution system planning and forecasting. (L3)					
CO3	Apply the concepts of sub transmission lines, distribution substations, primary and secondary Systems. (L3)					
CO4	Analyze the theory of distribution automation and SCADA systems. (L4)					
CO5	Examine the mechanism of network reconfiguration, improvement in voltage profile, Capacitor placement in distribution system. (L4)					
CO6	Show the ability to apply the various distribution system planning and automation concepts and submit a report.					

(Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1													3	3
CO2	3												3	3
CO3	2					2							3	3
CO4			2				2						3	3
CO5		2				2							3	3
CO6									3	3		3	3	3

	SYLLABUS					
Unit	Unit Contents					
No.		CO				
I	Distribution Systems Planning: Introduction, Distribution system planning, Factors affecting system planning, Present distribution planning techniques, Distribution system planning in the future, Future nature of distribution planning, Central role of the computer in distribution planning, Impact of Dispersed Storage and Generation, Load characteristics, Load forecasting, Long term forecasting, Technological forecasting.	CO2 CO6				

II	Design Of Sub transmission Lines and Distribution substations: Sub-transmission, Distribution substations, Sub-station bus schemes, Sub-station location, Rating of distribution substation, Substation service area with 'n' primary feeders, Comparison of four and six feeder patterns.	~ ~ ~
III	Design Considerations of Primary and Secondary Systems: Radial type and loop type primary feeders, Primary network, Primary feeder voltage levels, Primary feeder loading, Radial feeders with uniformly distributed load and non-uniformly distributed loads, Secondary voltage levels, Secondary banking, and Secondary networks-Secondary mains Voltage drops and power loss calculations-three phase balanced primary lines, non-three phase primary lines.	CO3
IV	Distribution Automation Problems of existing Distribution System, Need for Distribution Automation, Characteristics of Distribution System, Distribution Automation (Objectives, Functions, Benefits), Communication Requirements for DA, Remote Terminal Unit (RTU), Network reconfiguration, Improvement in Voltage Profile, Capacitor Placement in Distribution System for Reactive Power Compensation, Algorithm for location of capacitor	CO4 CO5 CO6
V	SCADA SYSTEM Introduction, Block Diagram, Components of SCADA, Functions of SCADA, and SCADA applied to Distribution Automation, Advantages of DA through SCADA, Requirements and Feasibility, DA Integration Mechanisms, Communication Protocols in SCADA Systems.	CO1

Learning Resources

Text Books

- 1. Dr M K Khedkar and Dr G M Dhole, "A Textbook of Electric Power Distribution automation", University Science Press, 1st Edition 2011.
- 2. Turan Gonen, "Electric Power Distribution system Engineering", CRC press, 3rd edition, 2014

Reference Books

- 1. A.S. Pabla, "Electric Power Distribution" Tata Mc Graw-hill Publishing Company, 6th edition, 2011.
- 2. Control and Automation of Electrical Power Distribution systems by James North cote and Robert Wilson, CRC press, 1st edition 2006.

Web Links

- 1. https://www.youtube.com/playlist?list=PLwdnzlV3ogoWKGs1XQdyB0qcgijA1PfYJ
- 2. https://www.youtube.com/watch?v=DlGSGJISxUI&list=PLLy_2iUCG87DxrqJr3dBhSruMiRHK0rNr