MATLAB PROGRAMMING

Course Code	20EC2601A	Year	III	Semester	II
Course Category	Open Elective-II	Branch	Common to All	Course Type	Theory
Credits	3	L-T-P	$3-0-0$	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes

Upon successful completion of the course, the student will be able to	
CO1	Outline the basic concepts of MATLAB. (L2)
CO2	Develop programs for scientific and mathematical problems. (L3)
CO3	Analyze an engineering system/Problem through graphical representation and numerical analysis. (L4)
CO4	Build optimized code for various applications in Engineering and Technology.(L3)

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

* - Average value indicates course correlation strength with mapped PO

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO $\mathbf{1 0}$	PO $\mathbf{1 1}$	PO $\mathbf{1 2}$	PSO1	PSO2
$\mathbf{C O 1}$	2									1			2	2
CO2	3									2			3	3
$\mathbf{C O 3}$		2								2			2	2
$\mathbf{C O 4}$	3									2			3	3

Syllabus		
Unit No.	Contents	Mapped CO
I	Introduction: Starting MATLAB, Working in command window, Arithmetic operations, Display formats, Elementary Math Built-in functions, Defining scalar variables, useful commands for managing variables, Script files, Examples of MATLAB applications	CO1,CO2

| II | Creating arrays and Mathematical operations with
 arrays:Creating 1-dimensional and 2- dimensional arrays, The
 Transpose operator, Array addressing, using a colon: in addressing
 arrays, Adding elements to existing variables, Deleting elements,
 Built in functions for handling arrays, Strings and strings as variables,
 Addition and Subtraction, Array Multiplication and Division,
 Element-by-Element operations, using arrays in MATLAB built-in
 math functions, Built in functions for analysing arrays, Generation of
 Random Numbers, Examples of MATLAB applications. | O4 |
| :---: | :--- | :--- | :--- |
| III | Two Dimensional and Three Dimensional Plots: plot, fplot
 commands, Formatting a plot, plots with logarithmic axes, error bars,
 special graphics, Histograms, Polar plots, putting multiple plots on the
 same page, Multiple figure windows, Examples, Line plots, Mesh and
 surface plots, plots with special graphics, The view command,
 Examples of MATLAB applications | CO1,CO2,C
 O3,CO4 |
| IV | Programming in MATLAB: Relational and Logical operators,
 conditional statements, The switch-case statement, Loops, Nested
 Loops and Nested conditional statements, The break and continue
 commands, creating a function file, structure of a function file, Local
 and Global variables, saving a function file, using a User-defined
 function, Examples of simple User-defined functions, comparison
 between script files and function files. | CO1,CO2,C |
| O4 | | |
| V | Polynomial, Curve-fitting, Interpolation, Numerical Analysis:
 Polynomials, curve fitting, Interpolation, The Basic fitting interface,
 Examples, solving equation of one variable, Finding minimum or
 maximum of a function, Numerical integration, ordinary differential
 equations. | CO2,CO3, CO4 |

Learning Resources

Text Books

1. MATLAB: An Introduction with applications - Amos Gilat, Wiley India Pvt. Ltd, 4th Ed., 2012.

Reference Books

1. Getting started with MATLAB - Rudra Pratap, Oxford University Press, 2010
2. MATLAB and SIMULINK for Engineers - Agam Kumar Tyagi, Oxford University Press, 2012.
