CIRCUIT ANALYSIS

Course Code	20EC5601	Year	III	Semester	II
Course Category	MINORS	Branch	ECE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes
Upon suc	ccessful completion of the course, the student will be able to
CO1	Understand active and passive elements used in electrical networks (L2)
CO2	Solve problems on networks by applying different network analysis techniques (L3)
CO3	Analyze networks using methods like mesh analysis, nodal analysis and network
	theorems to make inferences/ find evidence to support solutions/ conclusions (L4)
CO4	Inspect the given circuit and situation to find the bandwidth, selectivity and quality
	factor of a series and parallel resonant circuits (L4)

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2:Madium, 1:1, arr)

2:Medium, 1:Low)														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	2									2		2		2
CO2	3									3				2
CO3		3								3				2
CO4		2								2				1
Average* (Rounded to nearest integer)	3	3								3				2

Syllabus						
Unit No. Contents						
Ι	Introduction to Electrical Circuits: Basic Concepts of active and passive elements and their V-I relations, Ohm's Law, Sources (dependent and independent), Kirchhoff's laws– Resistors in series and parallel circuits– Mesh current and node voltage method of analysis for D.C circuits.	CO1- CO3				
П	Network Reduction and Network Theorems for DC Circuits: Network reduction techniques (series, parallel, series - parallel, star-to- delta and delta-to-star transformation), source transformation technique, nodal analysis and mesh analysis, Super node and Super mesh analysis, Thevenin's and Norton's theorems – Superposition theorem–Maximum power transfer theorem–Reciprocity Theorem.	CO1-CO3				

	Sinusoidal Steady-State Analysis: Periodic waveforms (determination	CO1- CO3						
	of RMS, average value, peak factor and form factor), concept of phase							
III	angle, phase difference – waveforms and phasor diagrams, rectangular							
	and polar forms of representations, power factor, real, reactive and							
	apparent power.							
IV	Resonance and Coupled circuits:							
	Series and parallel resonance, the frequency response-Quality factor and							
	Bandwidth							
	Two port Networks Analysis:	CO1,CO2,						
V	Open circuit Impedance & Short circuit Admittance parameter,	CO4						
	Transmission parameters, Hybrid parameters and their inter relations.							

Learning Resources

Text Books

1. W. Hayt and Jack E.Kemmerley -Engineering Circuit Analysis, McGraw Hill Company, 6thEd.

2. Van Valkenburg - Network Analysis; Prentice-Hall of India Private Ltd.

Reference Books

1. C. K. Alexander and Mathew N.O. Sadiku-Fundamentals of Electrical Circuits, Mc.Graw HillEducation.

- 2. Carlo, Lin, Linear Circuit Analysis, Oxford publications.
- 3. M. Nahvi & J.Edminister, Electric Circuits (Schaum's outlines) 5th Ed., McGraw Hill.
- 4. David A. Bell, Electric Circuits, Oxford publications.

e-Resources

1.https://www.youtube.com/playlist?list=PLC7D3EAEFA0CC0420&app=desktop

2.https://www.tutorialspoint.com/network_theory/network_theory_quick_guide.htm 3.https://nptel.ac.in/courses/108/105/108105159/