MACHINE LEARNING

Course Code	20EC4601E	Year	III	Semester	II
Course	Program	Branch	ECE	Course Type	Theory
Category	Elective II				
Credits	3	L-T-P	3-0-0	Prerequisites	Linear, algebra, Statistics and Probability
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes					
Upon st	Upon successful completion of the course, the student will be able to					
CO1	Understand the basic concepts of machine learning	L2				
CO2	Apply machine learning techniques on appropriate problems	L3				
CO3	Apply Evaluation, hypothesis tests and compare the performance of learning techniques forvarious problems	L3				
CO4	Analyze Reinforcement learning to address the real time problems in different areas	L4				

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average value indicates course correlation strength with mapped PO														
COs	РО	РО	PO	РО	РО	PO	РО	РО	PO	PO1	PO1	PO1	PSO	PSO
COS	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	2	-	-	-	-	-	-	2	-	2	-	2	-	-
CO2	3	-	-	-	-	-	-	3	-	3	-	-	3	-
CO3	3	-	-	-	3	-	-	3	-	3	-	-	2	-
CO4	-	2	-	-	-	-	-	2	-	2	-	-	-	2
Average * (Rounde d to nearest integer)	3	2	-	-	3	-	-	3	-	3	-	2	3	2

	Syllabus						
Unit	Unit Contents						
No.		CO					
	Introduction: What is Machine learning, Designing a Learning						
Ι	System, Perspectives and Issues in Machine Learning,						
	Applications of Machinelearning.						
	Supervised Learning: Decision Trees, Bayes Theorem, Naive	CO1,					
II	Bayes Classifier, Measuring Classifier Accuracy, Estimating	CO2,					
	HypothesisAccuracy	CO3					
	Instance Based Learning – Support vector machine, Ensemble						
III	Methods, k-Nearest Neighbor Learning, Expectation Maximization						
	Algorithm, Case Based Reasoning						

IV	Un Supervised Learning: Partition methods of Clustering, Hierarchical methods, Density based clustering, Scalable Clustering Algorithms, Cluster Evaluation measures Association analysis: Apriori algorithm, efficiently finding frequent itemsets with FP-growth					
V	Reinforcement learning: The learning Task, Elements of Reinforcement learning, Q-Learning, Model based Learning, Temporal Difference learning	CO1, CO4				

Learning Resources

Text Books

1. Ethem Alpaydin - Introduction to Machine Learning, 2nd Ed., 2010, PHI

2. Anuradha Srinivasa Raghavan, and Vincy Joseph - Machine Learning, Kindle Edition, 2020, WILEY

References

1. Tom M. Mitchell - Machine Learning - International Edition 1997, McGraw Hill Ed.

2. Ian Goodfellow, Yoshua Bengio, Aaron Courville - Deep Learning, 2016, MIT Press

3. Kevin P Murphy & Francis Bach - Machine Learning a Probabilistic Perspective, 1st Ed.,2012, MIT Press.

4. Tan, Vipin Kumar, Michael Steinbach - Introduction to Data Mining 9th Ed., 2013, Pearson

e-Resources and other Digital Material

1. https://www.coursera.org/learn/machine-learning

2. https://nptel.ac.in/courses/106/106/106106139/