ENERGY MANAGEMENT

Course Code	20EE2601	Year	III	Semester	Π
Course Category	Open Elective-II	Branch		Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Applied Physics, Basics of Electrical & Electronics Engineering
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

COURSE OUTCOMES						
After the completion of the course student will be able to						
CO1	Understand the fundamentals of energy scenario, energy management, Power Factor, Lighting and Energy Instrument, electric energy and economic aspects. (L2)					
CO2	Apply the knowledge of energy scenario and energy management in electrical energy. (L3)					
CO3	Apply the knowledge of Power Factor, Lighting and Energy Instruments use in electrical energy systems. (L3)					
CO4	Analyze the methods to improve efficiency of electrical energy systems. (L4)					
CO5	Analyze the economic aspects for energy conservation. (L4)					
CO6	Ability to apply the various laws of energy management tools to measure the basic parameters and submit a report.					

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)														
CO/PO, PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3					2	2						2	2
CO3	3		2		2								2	2
CO4		3										2	2	2
CO5		3		2							2		2	2
CO6									3	3		2	2	2
AVG	3	3	2	2	3	2	2		3	3	2	2	2	2

SYLLABUS							
Unit	Contents	Mapped CO					
No.							
Ι	Energy Scenario: Commercial and Non-commercial energy, primary	CO1,CO2,					
	energy resources, commercial energy production, final energy	CO6					
	consumption, energy needs of growing economy, long term energy						

	1
scenario, energy pricing, energy sector reforms, energy and environment,	,
energy security, energy conservation and its importance, restructuring of	
the energy supply sector, energy strategy for the future, air pollution,	
climate change. Energy Conservation Act-2001 and its features.	
HEnergy Management: Introduction to energy management, principles	
of energy management, organizing energy management program,	, CO1,CO2,
initiating, planning, controlling, promoting, monitoring, reporting-	006
Energy manger, Qualities and functions.	
III Power Factor Improvement, Lighting and Energy Instruments	CO1 CO2 CO(
:Power factor –Pf with non-linear loads, effect of harmonics on power	CO1,CO3,CO6
factor, power factor motor controllers - Good lighting system design and	l
practice, lighting control ,lighting energy audit – List of Instruments for	L
energy audit- wattmeter, data loggers, thermocouples, pyrometers, lux	
meters, tongue testers (working principle and measurement).	
IVELectric Energy Management: Introduction, Power Supply Effects of	
Unbalanced Voltages on the Performance of Motors, Electric motor	CO1,CO4,CO6
Operating Loads, Determining Electric Motor Operating Loads, Power	a 1
Meter, Slip Measurement, Electric Motor Efficiency, Sensitivity of Load	l
to Motor RPM, Theoretical Power Consumption, Motor Efficiency	7
Management, Motor Performance Management Process	
Energy efficient transformers : Introduction, transformer	Ĺ
loading/efficiency analysis, case studies.	
VEconomic Aspects and Analysis: Economics Analysis-Depreciation	
Methods, time value of money, internal rate of return, net present value	,001,005,006
method- Case Study- Energy efficient motors, replacement analysis, life	
cycle costing analysis- calculation of simple payback method, Case	
Study, Power factor correction, lighting - Applications of life cycle	
costing analysis, return on investment.	

Learning Resources

- 1. Wayne C.Turner, —*Energy management Hand book*, 8th Edition. John Wiley and son.
- 2. S.C. Tripathy, Electric Energy Utilization and Conservation, Tata McGraw Hill, 1991.
- 3. Arry C. White, Philip S. Schmidt, David R. Brown, *—Industrial Energy Management Systems*, Hemisphere Publishing Corporation, New York, 1994

References:

Text Books:

- 1. John C. Andreas, —*Energy efficient electric motors selection and application*.
- 2. Amit kumarTyagi, —*Hand book on Energy Audit and Management*, TERI (Tata Energy Research Institute).
- 3. Paul W.O. Callaghan, *—Energy Management*, McGraw hill Book Company.
- 4. Rakosh Das Begamudre, *—Energy conversion systems*, 10th Edition, New Age International Publishers.
- 5. Industrial Energy Management: Principles and Applications by Giovanni Petrecea, Kluwer international series in engineering and computer science. Power electronics & power systems.1993.
- 6. W.R. Murphy & G.Mckey Butterworths, —Energy Management, New Age International Publishers.

e- Resources & other digital material

1. www.bee-india.com