INTERNET OF THINGS LAB

Course Code	20ES1551	Year	III	Semester	I
Course Category	Engineering Sciences	Branch	ECE	Course Type	Practical
Credits	1.5	L-T-P	0-0-3	Prerequisites	Programming for Problem Solving
Continuous Internal Evaluation :	15	Semester End Evaluation:	35	Total Marks:	50

	Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to					
CO1	Apply appropriate techniques, resources and IDE for modeling system designs with understanding of limitations.	L3				
CO2	CO2 Develop various sensor interfacing using programming language					
CO ₃	Evaluate wireless control of remote devices	L5				
CO4	Develop mobile application which can interact with sensors and actuators	L6				
CO5	Make an effective report based on experiments.					

Mapping of	course outcomes with Program ou	itcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

* - Average value indicates course correlation strength with mapped PO

•••	* - Average value indicates course correlation strength with mapped PO													
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
CO1	3								2				3	3
CO2	3								2				3	3
CO3				3					2				1	1
CO4			2						2				2	2
CO5										3				
Averag e* (Round ed to nearest integer)	3		2	3					2	3			2	2

	Syllabus					
Expt. No.	Contents	Mapped CO				
1	Introduction to Arduino and necessary software installation. Interface and control LED.	CO1, CO5				
2	Digital I/O Interface.	CO1, CO2, CO5				
3	Analog I/O Interface.	CO1, CO2, CO5				
4	Fabrication and direction control of wheeled robot using Arduino.	CO1, CO2, CO5				
5	Serial Communication - Device Control.	CO1, CO2, CO5				
6	Wireless Module Interface.	CO1,CO3, CO5				
7	Basic Android App Development using MIT App Inventor.	CO1,CO4, CO5				
8	Smart Home Android App Development using App Inventor and Arduino.	CO1,CO4, CO5				

❖ A minimum of 10 experiments to be done covering all the above topics

Learning Resources				
Text Books				
1. Sylvia Libow Martinez, Gary S Stager, "Invent To Learn: Making, Tinkering, and 2. Engineering in the Classroom", Constructing Modern Knowledge Press, 2016.				
References				
1. Michael Margolis, "Arduino Cookbook", Oreilly, 2011.				
e-Resources & other digital material				

- https://ocw.cs.pub.ro/courses/iot
 https://education.ni.com/teach/resources/1079/industrial-internet-of-things-laboratory