PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY

(Autonomous) Kanuru, Vijayawada-520007

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI & ML)

III B. Tech – I Semester CSE (AI&ML)

Machine Learning Lab

Course Code	20AM3551	Year	III	Semester	Ι
Course Category	PCC Lab	Branch	CSE(AI&ML)	Course Type	Practical
Credits	1.5	L-T-P	0-0-3	Prerequisites	Python Programming
Continuous Internal Evaluation	15	Semester End Examination	35	Total Marks	50

	Course Outcomes						
Upon successful completion of the course, the student will be able to							
CO1	Demonstrate experimental procedures through oral communication and submit comprehensive documentation reports.	L2					
CO2	Apply supervised and unsupervised machine learning techniques for developing predictive and descriptive models using tools.	L3					
CO3	Analyze machine learning problems, and critically assess their performance and limitations.	L4					
CO4	Evaluate the performance of machine learning models using suitable metrics across various datasets.	L5					
CO5	Design and develop the system that demonstrates intelligence using Machine Learning	L6					

Contr	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Moderate, 1:Low)											elations		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2									2				
CO2					3							3	3	
CO3		3										3		
CO4				3								3		
CO5												3		3

PVP20

Syllabus					
Expt No.	Contents				
1	Explore different Tools: Jupyter Notebook, PyTorch, TensorFlow, Google Colab, Kaggle.	CO1			
2	Develop and implement linear and non-linear regression models, and evaluate their performance using a comprehensive set of appropriate metrics across various datasets.				
3	Implement logistic regression on different datasets & evaluate using accuracy, precision, recall, AUC-ROC to assess generalizability.	CO1 to CO4			
4	Evaluate the performance of KNN on various Datasets using Accuracy as the metric, with a focus on determining the optimal number of neighbors (K).	CO1 to CO4			
5	Implement Support Vector Machines (SVM) for classification on various datasets and evaluate their performance using confusion matrices, precision, recall, and F1 scores.				
6	Implement a simple perceptron and multi-layer perceptron to classify handwritten digits using the MNIST dataset.	CO1 to CO4			
7	Evaluate ANNs for image recognition (e.g., MNIST). Compare with SVMs & KNNs using accuracy, precision, recall, F1. Explore ANN strengths & weaknesses: impact of network architecture & data quality, and interpretability vs. other algorithms.				
8	Apply ensemble learning methods (bagging, boosting, and stacking) and evaluate their performance using accuracy, precision, and recall metrics to determine the best ensemble method for a given task.				
9	Implement Recurrent Neural Network (RNN) architectures, including Long Short- Term Memory (LSTM) for sequence modeling tasks such as text generation or sentiment analysis.	CO1 to CO4			
10	Capstone Project: Development of a robust end-to-end machine learning pipeline adhering to the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology, culminating in a comprehensive research paper that elucidates the chosen machine learning technique, the specific application domain, and the empirical results obtained	CO1 to			

Learning Resources

Text Books

- 1. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, Aurelien Geron, Third Edition, 2022, O'Reilly
- 2. Pattern Recognition and Machine Learning, Christopher M. Bishop, First Edition, 2016, Springer

Reference Books

1. Machine Learning, Tom M. Mitchell, First Edition, 2017, McGraw Hill Education

2. Machine Learning: A Probabilistic Perspective, Kevin P. Murphy, 2012, MIT Press

e- Resources & other digital material

- 1. Practical Machine Learning with TensorFlow: <u>https://nptel.ac.in/courses/106106213</u>
- 2. <u>https://www.tensorflow.org/tutorials</u>
- 3. <u>https://pytorch.org/tutorials/</u>