Course Code	20EE4501E	Year	III	Semester(s)	Ι
Course Category	Professional Elective-I	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	-
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

COMPUTER ORGANIZATION AND ARCHITECTURE

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	Understand the basic functional units of a computer system and its organization. (L2)						
CO2	Apply appropriate instructions for processing various types of computers operations. (L3)						
CO3	Apply various types of organizations on registers. (L3)						
CO4	Analyze memory hierarchy, I/O communication and pipelining. (L4)						

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													3
CO2	2								1	1			2	2
CO3	2								1	1			2	2
CO4		2							1	1			2	

	SYLLABUS				
Unit	Unit Contents				
No.		СО			
Ι	Register Transfer and Micro-Operations: Register Transfer Language, Register Transfer, memory Transfers, Bus construction with Multiplexers, Arithmetic Micro-operations, Logic Micro-operations, Shift Micro- operations, Arithmetic Logic Shift Unit.	CO1, CO2			
II	Basic Computer Organization: Instruction codes, Computer Registers, Computer Instructions, Timing and Control, Instruction Cycle, Memory- Reference Instructions, Input- Output and Interrupt.	CO1, CO2			
III	Central Processing Unit: General registers Organization, Stack Organization, Instruction Formats, Addressing Modes, Data Transferand Manipulation, Program Control.	CO1, CO3			
IV	 Computer Arithmetic: Introduction, Addition and Subtraction, Booth Multiplication Algorithm. Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associative Memory, Cache Memory, Virtual Memory. 	CO1, CO2, CO4			

V	Input-Output Organization: Peripheral Devices, Input-output Interface,	
	Asynchronous Data Transfer, Priority Interrupt, Direct Memory Access	~ ~ /
	(DMA), Input-Output Processor.	CO1, CO4
	Pipeline and Parallel Processing: Parallel processing, Pipelining,	CO4
	Arithmetic pipeline, Instruction pipeline.	

Learning Resources

1. Morris M. Mano, Computer System Architecture, Pearson., Third Edition, 1992,

Reference Books

1. William Stallings, Computer Organization and Architecture, PHI, Eighth Edition, 2010.

2. Carl Hamachar, Vranesic, Computer Organization, McGraw Hill, 2002.

Web Links

1. https://nptel.ac.in/courses/106/106/106106092/