ELECTRICAL MACHINE DESIGN

Course Code	20EE4501B	Year	III	Semester	Ι	
Course Category	Professional Elective-I	Branch E.E. E Course Type Th		ranch E.E. E Course Type		
Credits	3	L-T-P	3-0-0	Prerequisites	Electrical Machines – I &II	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

	Course Outcomes					
Upon s	Upon successful completion of the course, the student will be able to					
C01	Classify the materials used for construction of electrical machines(L2)					
CO2	Assess the overall dimensions of a transformer. (L3)					
CO3	Examine the design, performance of transformer (L4)					
CO4	Develop the overall dimensions of a rotating machine. (L3)					
CO5	Analyze the design and performance of rotating machines. (L4)					
CO6	Submit a report on design of electrical machines					

C	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)										&			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3			3				1				1	2	1
CO3		3	3										2	1
CO4	3			3				1				1	2	1
CO5		3	3										2	1
CO6						1			3	3	1			

	Syllabus				
Unit	Contents	Mapped			
No.		CO			
Ι	Fundamental Aspects of Electrical Machine Design				
	Design of machines - design factors - limitation in design - modern trends in	CO1			
	electrical machine design – types of magnetic, electric and insulating	CO2			
	materials - modes of heat dissipation - cooling of rotating machines -	CO4			
	methods of cooling.	CO6			
Computer Aided Design (CAD) of Electrical Machines					
	Limitations and assumptions in traditional designs, need of CAD, analysis,				
	synthesis and hybrid methods, design optimization methods, variables, constraints				
	and objective function, problem formulation				
II	Design of transformers				
	Transformer windings – output equation – design of main dimensions-	CO1			
	design of core - choice of flux density – determination of number of turns	CO2			
	and length of mean term - resistance and leakage reactance – no load current	CO3			
	calculation -cooling of transformers- calculation of number of tubes.	CO6			

	D'ADOM L'					
III	Design of DC Machines					
	Output equation –selection of specific magnetic and electric loadings -					
	separation of D and L – estimation of number of conductors, armature slots	CO4				
	and conduct dimensions – choice of number of poles and calculation of	CO5				
	length of airgap – design of field systems, interpoles and brushes.	CO6				
IV	Design of Induction motors	CO1				
	output equation -main dimensions – choice of average flux density and	CO4				
	ampere conduction for meter — design of stator slots and rotor slots- design	CO5				
	of rotor bars end rings- design of wound rotor - design of no-load current.	CO6				
V	Design of Synchronous Machines	CO1				
	Types of construction – output equation - main dimensions – short circuit	CO4				
	ratio and its effects on the performance – design of rotor –Design of field	CO5				
	winding – Design of turbo alternators – Rotor design temperature rise and its	CO6				
	effects.					
	Learning Resources					
	Books	41-				
1. A.K.Sawhney, "A Course in Electrical Machines Design", Dhan path Rai & Co. 6 th edition 2010.						
	rence Books					
1.	 AE Clayton and NN Hancock, "The Performance and Design of Direct Current Machines", CBS Publishers, 3rd edition, 2004. 					
2. M.G. Say, "Performance and Design of A.C. Machines", ELBS and Pitman & Sons, 4 th edition, 2013.						
3.	S. K. Sen, "Principles of Electrical Machine Design with computer programmes", Oxford and IBH Company Pvt. Ltd. New Delhi, 2 nd edition,2006.					
 K. M. Vishnu Murthy, "Computer Aided Design of Electrical Machines", B.S. Publications, 1st edition 2008. 						
Web I	inks					
1.	1. <u>https://cusp.umn.edu/electric-machine-design-videos</u>					
2.						
	 <u>https://nptel.ac.in/courses/108/105/108105017</u> <u>https://nptel.ac.in/courses/108/105/108105017</u> 					
э.	<u>11095.//11010301/</u>					

.