RF IC Design

Course Code	20EC6503	Year	III	Semester	I	
Course Category	Honors	Branch	ECE	Course Type	Theory	
Credits	4	L-T-P	3-1-0	Prerequisites	Electronic devices and Circuits	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

	Course Outcomes						
Upon	successful completion of the course, the student will be able to						
CO1	Understand passive components at RF frequencies and required circuit						
COI	theory(L2)						
CO2	CO2 Design high frequency amplifiers and low noise amplifiers(L3)						
CO3	CO3 Compare different types of mixers(L4)						
CO4	CO4 Analyze oscillators and synthesizers at RF frequencies(L4)						

Mapping of course outcom	es with Program outcome	es (CO/ PO/PSO Matrix)
NT - 4 1 NV11 - 4!	O M - 1' 1 - 4'	2 (4

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation
* - Average value indicates course correlation strength with manned PO

7	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2				2					2			2	
CO2	2		2		2					2			2	
CO3		2			2					2			2	
CO4		3			3					3			3	
Avg.	2	3	2		2					2			2	

Syllabus					
Unit No.	Contents	Mapped CO			
1	Characteristics of passive IC components at RF frequencies – interconnects, resistors, capacitors, inductors and transformers – Transmission lines Classical two-port noise theory, noise models for active and passive components, Noise figure, Nonlinearity, cascaded stages, Sensitivity and dynamic range	CO1			

2	High frequency amplifier design – zeros as bandwidth enhancers, shunt-series amplifier, fTdoublers, Low noise amplifier design – LNA topologies, impedance matching, power constrained noise optimization, linearity and large signal performance	CO1, CO2
3	Mixers – fundamentals of mixers, multiplier-based mixers, sub sampling mixers, diode-ring mixers.	CO1, CO3
4	Oscillators—Feedback View of Oscillators, Colpitts oscillator, Hartley oscillator, describing functions, tuned oscillators, negative resistance oscillators.	CO1, CO4
5	Synthesizers : Basic Integer-N Synthesizer, synthesis with static moduli, combination synthesizers, phases noise considerations.	CO1, CO4

Learning Resources

Text Books

- 1. Thomas H. Lee, Cambridge, The Design of CMOS Radio-Frequency Integrated Circuits, UK: Cambridge University Press, 2004
- 2. Phillip E. Allen and Douglas R. Holberg- CMOS Analog Circuit Design Oxford University Press -3rd Ed., -2011

Reference Books

- 1. Behzad Razavi, RF Microelectronics, Prentice Hall, 1998.
- 2. Ludwig, RF Circuit Design, 2nd Ed., Pearson

e-Resources

- 1. https://nptel.ac.in/courses/117102012
- 2. https://archive.nptel.ac.in/courses/117/102/117102012/
- 3. https://www.digimat.in/nptel/courses/video/117102012/L17.html