SENSORS AND ACTUATOR DEVICES FOR IOT

Course Code	20EC5502	Year	III	Semester	I
Course	Minor	Branch	ECE	Course Type	Theory
Category Credits	4	L-T-P	3-1-0	Prerequisites	IOT
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Illustrate the working principles of different types of sensors and actuators (L2)				
CO2	Analyse the phenomena that define behaviour of various sensors and actuators. (L4)				
CO3	Apply the concepts in common methods for converting a physical parameter into an				
	electrical quantity. (L3)				
CO4	Identify suitable sensors and actuator for real time applications(L3)				

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2									1				1
CO2		3								2				2
CO3	3									2				2
CO4	3									2				2
Avg.	3	3								2				2

Syllabus					
Unit No.	Contents				
I	Sensors/Transducers, Principles, Classification, Characterization. Mechanical and Electromechanical Sensors: Introduction, Resistive Potentiometer, Inductive Sensors, Capacitive Sensors- Parallel plate & serrated plate types, Ultrasonic Sensors.	CO1- CO3			
II	Thermal Sensors: Introduction, Helium Low Temperature Thermometer, Nuclear Thermometer, Magnetic Thermometer, Junction Semiconductor Types, Magnetic Sensors: Introduction, Sensors and the Principles Behind, Force & displacement Sensors.				
III	Radiation Sensors : Introduction – Basic Characteristics – Types of Photo sensistors /Photo detectors– X-ray and Nuclear Radiation Sensors – Fiber Optic Sensors.				
IV	Smart Sensors: Introduction, Primary Sensors, Excitation, Amplification, Filters, Converters, , Information Coding/Processing, Data Communication, Standards for Smart Sensor Interface, the Automation. Sensors Applications: Introduction, On-board Automobile Sensors (Automotive Sensors), Home Appliance Sensors, Medical Diagnostic Sensors, Sensors for Manufacturing, Sensors for environmental Monitoring				

	Actuators: Pneumatic and Hydraulic Actuation Systems, Valves, Rotary	CO1,
V	actuators, Mechanical Actuation Systems Electrical Actuation Systems.	CO2,
		CO4

Learning	Resources

Text Books

- 1. D. Patranabis-Sensors and Transducers, PHI Learning Private Limited.
- 2. W. Bolton-Mechatronics, Pearson Education Limited.

Reference Books

- 1. Patranabis-Sensors and Actuators- 2nd Ed., PHI, 2013.
- 2. Robert H. Bishop-The Mechatronics Handbook, 2nd Ed., Mechatronic Systems, Sensors and Actuators, fundamentals and modelling

e- Resources & other digital material

1. https://nptel.ac.in/content/syllabus_pdf/108108147.pdf
