TRANSMISSION LINES AND WAVEGUIDES

Course Code	20EC4501C	Year	III	Semester	I
Course	Program	Branch	ECE	Course Type	Theory
Category	Elective				
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

	Course Outcomes					
CO1	Interpret various parameters of transmission lines, waveguides and resonators. (L2)					
CO2	Solve various parameters like load reflection coefficient, Standing Wave Ratio, Line					
	impedance and Cut-off frequency for transmission lines, waveguides and resonators					
	(L3)					
CO3	Apply smith chart for line parameters and impedance calculations. (L3)					
CO4	Analyze the field components and characteristics of a transmission lines, waveguides					
	and resonators. (L4)					
CO5	Submit a report on transmission lines ,waveguides and resonators (L5)					

Mapping	of cou	ırse o	utcon	nes wi	th Pro	ogram	outc	omes	(CO /)	PO/PS	SO Ma	trix)		
Note: 1-										_		n		
* - 1	Averag	e valu	e indic	ates co	ourse c	orrelat	ion stre	ength v	with m	apped l	20			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	2					1								
CO2	3					2							3	
CO3	3				3	2							3	
CO4		3				2							3	
CO5									3	3				
Average* (Rounded to nearest	3	3			3	2			3	3			3	

Syllabus						
Unit No.	Contents	Mapped CO				
I	Basics of Transmission Lines: Concept and definition, Different kinds	CO1,				
	of transmission lines, Applications, Equivalent circuit, Primary	CO2,CO5				
	constants- R, L, C and G, Secondary constants – Propagation constant					
	and Characteristic Impedance, General transmission line equations.					
	Attenuation and phase constant. Wavelength, phase velocity and group					
	velocity. The lossless transmission line, The infinite long transmission					
	line, The distortion less transmission line and condition for					
	distortionlessness and minimum attenuation.	~ .				
II	Finite Transmission Lines: The load reflection coefficient, Standing	CO1,				
	Wave Ratio, Line impedance, Generalized reflection coefficient, The	CO2,CO5				
	lossless terminated transmission line, The lossless matched transmission					
	line, The lossless shorted transmission line, The lossless open transmission line.					
III	UHF Lines: UHF lines as circuit elements: $\lambda/4$, $\lambda/2$, $\lambda/8$ lines, Smith	CO1,CO3,				
111	Chart: Construction of smith chart, Smith chart as impedance chart,	CO1,CO3,				
	smith chart as admittance chart, Problems using smith chart. Impedance	CO4,CO3				
	matching, Quarter wave transmission line, Single stub and introduction					
	to double stub matching.					
IV	Waveguides: Introduction, Rectangular Waveguides-Transverse Electric	CO1,CO2,				
	(TE) and Transverse Magnetic (TM) mode analysis – Field expressions,	CO4, CO5				
	Characteristic equation, Cut-off frequency, Phase velocity, Group	ŕ				
	velocity, Attenuation and Phase constants, Wavelength and Impedance.					
	Dominant and degenerate modes					
V	Cavities: Rectangular Cavity Resonators-Dominant modes and	CO1,				
	Resonant Frequencies, Q factor, Types of coupling and Coupling	CO2,CO4,				
	coefficients.	CO5				
	Planar transmission lines: Introduction, Strip Lines, Micro strip Lines-					
	characteristic impedance, Losses and Quality factor. Parallel Strip Lines-					
	distributed parameters, characteristic impedance and attenuation losses.					

Learning Resources

Text Books

- 1. Nathan Ida, Engineering Electromagnetics, Springer International, 2nd Ed., 2008.
- 2. Samuel Y. Liao, Microwave Devices and Circuits –Pearson Education, 3rd Ed., 2003.

Reference Books

- 1. E.C. Jordan and K.G. Balmain Electromagnetic Waves and Radiating Systems, PHI, 2nd Ed., 2009
- 2. Annapurna Das, Sisir K Das, "Microwave Engineering", 2nd Ed., 2006, Tata McGraw Hill

e- Resources & other digital material

- 1. http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-%20Guwahati/em/index.htm
- 2. http://nptel.iitm.ac.in/video.php?subjectId=117101056
- 3. http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20Engg/Transmission%20Li~nes%20and%20EM%20Waves/TOC.htm~4.~http://www.mike-willis.com/Tutorial/PF2.htm
