Academic Rules and Regulations PVP20

[PVP18

Course Code	20CS4501A	Year	III	Semester	Ι
Course Category	PEC	Branch	CSE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Engineering Mathematics -2 (Probability & Statistics)
Continuous Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes							
Upon successful completion of the course, the student will be able to							
CO1	Understand the life cycle process of data science.L2						
CO2	Apply different data pre-processing techniques for improving data quality.	L3					
CO3	Apply statistical methods to evaluate the data.	L3					
CO4	Apply Statistical Learning techniques for model building, Assessment and Selection.	L3					

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations											tions		
(3:Substantial, 2: Moderate, 1:Slight)													
-						-							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3					1	1							
CO2	2									1				
CO3														2
CO4									1	1				3

	Syllabus	Mapped CO
Unit No.	Contents	
I	Introduction to Data Science- What is Data Science? Phases of Data Science: Data Acquisition, Cleansing, Exploratory Data Analysis, Data Preparation, Data Modeling. Engineering Aspects of Data Science: Business Understanding, Data Understanding, Data Preparation, Model Building, Model Evaluation, Hyper Parameter Optimization and Deployment.	CO1
П	Data Preprocessing: Introduction, Data Quality, Data Cleaning- Missing Values, Noisy data, Data Integration, Data Transformation- Smoothing, Attribute construction, Aggregation, Normalization, Discretization, Data Reduction- Wavelet Transforms, Principal Components Analysis, Attribute Subset Selection, Histograms, Clustering, Sampling	CO1, CO2
ш	Random Variables and Probability Distributions: Random variables (discrete and continuous), Probability Density Function (PDF), Probability Mass Function (PMF), and Cumulative Density Function (CDF). Discrete distributions- Uniform, Binomial, Bernoulli and Poisson distributions. Continuous Distributions- Normal distribution, Standard Normal distribution, Student's T distribution, Chi-squared distribution. Sampling Strategies: Introduction, Simple Random sampling, Systematic sampling, Stratified sampling, Cluster sampling.	CO1, CO3
IV	Linear methods for Regression: Introduction, Linear Regression models, Least Squares, Multiple Regression. Linear methods for Classification: Introduction, Linear discriminative analysis, Logistic Regression.	CO1, CO4
V	Model Assessment and Selection: Introduction, Bias, Variance and Model complexity, Bias-Variance decomposition, Optimism of the training error rate, Estimates of in-sample prediction error, Effective number of parameters, minimum description length, Holdout sets, and cross-validation.	CO1, CO4

Learning Resources

Text Books

- 1. Introducing Data Science, David Cielen, Arno D. B. Meysman, and Mohamed Ali, 2016, Manning Publications. (UNIT-I)
- 2. Data Mining: Concepts and Techniques, Jiawei Han, Micheline Kamber and Jian Pei, Third edition, Morgan Kaufmann. (UNIT-II)
- 3. The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani, Jerome Friedman, Second Edition, Springer. (UNIT-III, IV, V)

References

- 1. Cathy O'Neil and Rachel Schutt, "Doing Data Science", O'Reilly, 2015.
- 2. Data Science from Scratch: First Principles with Python, Joel Grus, Second edition, 2019, O'Reilly
- 3. Statistics, Robert S. Witte and John S. Witte, Eleventh Edition, 2017, Wiley Publications.

e- Resources & Other digital material

- 1. https://nptel.ac.in/courses/106106212
- 2. https://nptel.ac.in/courses/106106179
- 3. Data Science Methodology- Coursera https://www.coursera.org/learn/datascience-methodology
- 4. Foundations of Data Science edX <u>https://www.edx.org/course/foundationsof-data-science</u>