AI TOOLS LAB

Course Code	20SO8453	Year	II	Semester	II
Course Category	Skill Oriented Course	Branch	ECE	Course Type	Lab
Credits	2	L-T-P	1-0-2	Prerequisites	Nil
Continuous Internal Evaluation	0	Semester End Evaluation	50	Total Marks	50

Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to:					
CO1	Apply various pre-processing techniques and Machine Learning/ Deep Learning methods on different datasets for a given problem.	L3				
CO2	Implement various experiments in Jupyter Notebook Environment.	L3				
CO3	Develop an effective report based on various learning methods implemented.	L3				
CO4	Apply technical knowledge for a given scenario and express with an effective oral communication.	L3				
CO5	Analyze the outputs and visualizations generated for different datasets.	L4				

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3											2	1	
CO2					2				2			1	1	
CO3										2			2	
CO4	3									1			1	
CO5		3											2	
Average* (Roundedto nearest	3	3			2				2	2		2	2	

	Syllabus					
Exp. No.						
1	Apply Data pre-processing techniques.	CO1-CO5				
2	Construct a Machine Learning model using supervised learning method	CO1-CO5				
3	Construct a Machine Learning model using Unsupervised learning method	CO1-CO5				
4	Construct a Machine Learning model using Semi supervised learning method.	CO1-CO5				
5	Develop a Deep Learning model using supervised learning method	CO1-CO5				

6	Develop a Deep Learning model using Unsupervised learning method	CO1-CO5
7	Apply a Convolutional Neural Network for Image Classification	CO1-CO5
8	Build an AI application	CO1-CO5

Learning Resources

Text Books

- **1.** Artificial Intelligence: A Modern Approach, Stuart Russell and Norvig, Third Edition, 2015,
- 2. Pearson Education.
- **3.** Machine Learning: A Probabilistic Perspective, Kevin P. Murphy, 2012, MIT Press
- **4.** Deep Learning (Adaptive Computation and Machine Learning series), Ian Goodfellow, Yoshua Bengio, Aaron Courville, <u>Francis Bach</u>, 2017, MIT Press

e-Resources & other digital material

- 1. https://github.com/atinesh-s/Coursera-Machine-Learning-Stanford
- 2. https://github.com/Kulbear/deep-learning-coursera