CONTROL SYSTEMS ENGINEERING										
Course Code		20EC3404	Year	II	Semester	II				
Course Category		Program Core	Branch	ECE	Course Type	Theory				
Credits	5	3	L-T-P	3-0-0	Prerequisites					
Contin Interna Evalua	al	30	Semester End Evaluation	70	Total Marks	100				
Upon CO1	Course Outcomes Upon successful completion of the course, the student will be able to CO1 Classify control systems and determine the stability of a system using various models (L2)									
CO2	,	/	to a system to	determine th	eir characteristics	(L3)				
CO3	Apply standard test signals to a system to determine their characteristics (L3) Make use of stability concepts to obtain the desired characteristics (L3)									
CO4										
CO5 Examine the system behaviour using various stability analysis techniques (L4)										
Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO										

Average value indicates course conclution strength with happed 10														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2							2		2			2	
CO2	1							2		2			2	
CO3	3							2		2			2	
CO4		2						3		3			3	
CO5		2						3		3			3	
Average* (Rounded to nearest integer)	2	2						2		2			2	

	Syllabus	
Unit No.	Contents	Mapped CO
Ι	Introduction: Concepts of control systems. Examples of control systems, classification of control systems, Block diagram algebra, Representation by Signal flow graph. Reduction using Mason's gain formula. Feedback Characteristics, Effects of feedback. Mathematical modelling of systems – Electrical, mechanical translational and rotational systems.	CO1,CO3
II	Time Domain Analysis: Standard test signals, Time response of first and second order systems with standard input signals, Time domain specifications, steady state error and error constants. Effects of P, PI, PD and PID Controllers.	CO1,CO2, CO3,CO4
III	Stability Analysis in S-Domain: Concept of stability, Routh Hurwitz criterion. Construction of Root locus. Effects of adding poles and zeros to open loop transfer function on the root loci.	CO1, CO3,CO4,CO3

PVP-20

		Frequency Response Analysis: Correlation between time and	
IV	W	frequency responses. Determination of frequency domain	CO1,
	specifications, Gain margin and Phase margin -Stability Analysis	CO3,CO4,CO5	
		from Bode Plots, Polar plots and Nyquist plots.	
		State variable analysis: State, State variables, State variable	
		representation, State variable form from Transfer function	
	V	(Diagonal form), transfer function from State variable form, State	CO3,CO4,CO5
		transition matrix, properties of state transition matrix,	
		Controllability and Observability	

Learning Resources

Text Books

1. M.Gopal, "Control Systems Engineering", 3/e, Wiley Eastern Ltd., TMH, 2008

2. Benjamin C.Kuo, "Automatic Control Systems", 7/e, Prentice Hall of India, 1997.

Reference Books

- 1. Ogata, "Modern Control Engineering", 2/e, Prentice Hall of India., 2011
- 2. R.C. Sukla, "Control Systems", 3/e, Dhanpatrai and Sons, 1998
- 3. Control Systems Engg., Nise-John wiley, 3rd Edition 2000

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/108/106/108106098/
- 2. https://freevideolectures.com/course/2337/control-engineering