Design and Analysis of Algorithms Lab

Course Code	20CS3452	Year	П	Semester	II	
Course Category	PCC Lab	Branch	CSE	Course Type	Practical	
Credits	1.5	L-T-P	0-0-3	Prerequisites	Data Structures, Programming for Problem Solving	
Continuous Internal Evaluation :	15	Semester End Evaluation:	35	Total Marks:	50	

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Apply different design techniques for solving problems. L3				
CO2	Implement programs as an individual on different IDEs/ online platforms.	L3			
CO3	Develop an effective report based on various programs implemented.	L3			
CO4	Apply technical knowledge for a given problem and express with an effective oral communication.	L3			
CO5	Analyze outputs using given constraints/test cases.	L4			

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2					1				2					
CO3										2				
CO4										3				
CO5		3												

Syllabus					
Expt. No	Contents	Mapped CO			
1.	Develop and implement an algorithm using Divide and Conquer strategy for a given set of problems.	CO1,CO2,CO3,CO4,CO5			
2.	Make use of Greedy method to implement a solution for a given problem.	CO1,CO2,CO3,CO4,CO5			
3.	Develop and implement an efficient solution using Dynamic Programming.	CO1,CO2,CO3,CO4,CO5			
4.	Use Backtracking design technique to implement a solution for a given problem.	CO1,CO2,CO3,CO4,CO5			
5.	Develop and implement an algorithm using Branch and Bound technique for solving a given problem.	CO1,CO2,CO3,CO4,CO5			
6.	Case Study-1: Apply the most appropriate design technique to develop and implement an efficient solution for a given problem.	CO1,CO2,CO3,CO4,CO5			
7.	Case Study-2: Develop and implement an optimal solution for a given problem by applying a suitable design technique.	CO1,CO2,CO3,CO4,CO5			

Learning	Resources
----------	-----------

Text Books

- 1. Introduction to the Design & Analysis of Algorithms, Anany Levitin, Third Edition, 2011, Pearson Education.
- 2. Data Structures and Algorithm Analysis in C, Mark Allen Weiss, 2002, Pearson.
- 3. Algorithm Design Techniques, Narasimha Karumanchi, CareerMonk Publications, 2018.

e- Resources & other digital material

- 1. https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
- 2. http://littlesvr.ca/dsa-html5-animations/sorting.php
- 3. https://www.youtube.com/watch?v=AfYqN3fGapc