Operating Systems

Course Code	20CS3401	Year	II	Semester	II	
Course Category	PCC	Branch	CSE	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	Data structures, Computer Organization and Architecture	
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100	

Course Outcomes					
Upon suc	Upon successful completion of the course, the student will be able to				
CO1	Understand the structure and functionalities of operating systems	L2			
CO2	Apply different algorithms of CPU scheduling, Page replacement and disk scheduling	L3			
CO3	Apply various concepts to solve problems related to process synchronization and deadlocks.	L3			
CO4	Analyze and interpret the functionalities of operating system.	L4			

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	3								2	2				
CO3	3								2	2				
CO4		2							2	2			1	

Syllabus						
Unit No.	Contents	Mapped CO				
I	Overview: Introduction: What Operating Systems Do, Computer-System Organization, Computer-System Architecture, Operating-System Structure, Operating-System Operations Operating System Structures:	CO1,CO2,CO3				

	Operating-System Services, User and Operating-System Interface,		
	System Calls, Types of System Calls.		
II	Process Management: Process Concept, Process Scheduling, Operations		
	on Processes, Inter-process Communication.		
	Threads: Overview, Multi-core Programming, Multithreading Models.	CO1,CO2,CO4	
	Process Scheduling: Basic Concepts, Scheduling Criteria, Scheduling	001,002,004	
	Algorithms (First-Come, First-Served Scheduling, Shortest-Job-First		
	Scheduling, Priority Scheduling, Round-Robin Scheduling.)		
	Process Synchronization: Background, The Critical-Section Problem,		
	Peterson's Solution, Synchronization Hardware, Mutex Locks,		
III	Semaphores, Classic Problems of Synchronization, Monitors.	CO1, CO3,CO4	
	Deadlocks: System Model, Deadlock Characterization, Methods for	, ,	
	Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance,		
	Deadlock Detection, Recovery from Deadlock.		
	Memory Management:		
	Main Memory: Background, Swapping, Contiguous Memory Allocation,	CO1 CO2 CO4	
	Segmentation, Paging, Structure of the Page Table Virtual Memory:	CO1, CO2,CO4	
IV	Background, Demand Paging, Copy-on-Write, Page Replacement,		
- 1	Basic Page Replacement, FIFO Page		
	Replacement, Optimal Page Replacement, LRU Page		
	Replacement, LRU-Approximation Page Replacement, Allocation of		
	Frames, Thrashing.		
	Storage Management:		
V	File-System Interface: File Concept, Access Methods, Directory and		
	Disk Structure.		
	File-System Implementation: File-System Structure, File-System	CO1, CO2,CO4	
	Implementation, Directory Implementation, Allocation Methods.	001, 002,004	
	Mass-Storage Structure: Overview of Mass-Storage Structure, Disk		
	Structure, Disk Attachment, Disk Scheduling, FCFS Scheduling, SSTF		
	Scheduling, SCAN Scheduling, C-SCAN Scheduling, LOOK Scheduling,		
	Selection of a Disk-Scheduling Algorithm.		
earn	ing Resources		

Learning Resources

Text book

1. Operating System Concepts, Abraham Silberchatz, Peter Baer Galvin, Greg Gagne, Ninth Edition, 2016, Wiley India.

References

- 1. Operating Systems Internal and Design Principles, William Stallings, Ninth Edition, 2018, Pearson.
- 2. Operating Systems Harvey M.Deitel, Paul J Deitel and David R.Choffnes , Third Edition, 2019, Pearson.
- 3. Operating Systems A Concept based Approach- D.M. Dhamdhere, Second Edition, 2010, McGraw Hill.

e-Resources and other Digital Material

- 1. https://onlinecourses.nptel.ac.in/noc19_cs50/
- 2. http://www.youtube.com/watch?v=MaA0vFKtew&list=PL88oxI15Wi4Kw1aEY2bC51_4po uojjtd4