DIGITAL ELECTRONICS DESIGN WITH VHDL

Course	20EC6401A	Year	II	Semester	II
Code					
Course	(Honors)	Branch	ECE	Course Type	Theory
Category					
Credits	4	L-T-P	3-1-0	Prerequisites	DLD
Continuous	30	Semester	70	Total	100
Internal		End		Marks:	
Evaluation:		Evaluation:			

Course Outcomes

Upon successful completion of the course, the student will be able to

CO1 use modern development tools to design complex digital circuits(L2)

CO2 Analyze syntax and behavior of the VHDL language (L4)

CO3 Design the combinational and sequential logic circuits using VHDL(L3)

CO4 Simulate and make a synthesis of designs using Field Programmable Gate Array (L3)

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average value indicates course correlation strength with mapped PO														
COs	PO	РО	PO	РО	PO	PO	PO	РО	РО	PO1	PO1	PO1	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	2				2					2		2	2	
CO2		2			2					2			2	
CO3	3		3		3					3			3	
CO4	2		2		2					2			2	
Average * (Rounde d to nearest integer)	2	2	3		2					2		2	2	

Syllabus						
Unit No.	Contents					
Ι	Introduction to Hardware Description Languages (HDL) and HDL based design, VHDL- Variables, Signals and constants, Arrays, VHDL operators	CO1, CO2				
II	Expressions and signal assignments. Entities, architecture specification. Component instantiation. VHDL description of combinational networks, VHDL models for a multiplexer	CO1, CO3				
III	VHDL functions, VHDL procedures, Packages and libraries, Compilation, simulation of VHDL code.					
IV	Modeling flip-flops using VHDL, Modeling a sequential machine, VHDL model for a counter, Synthesis of Combinational and sequential circuits.	CO1, CO3				
V	Designing with Programmable Logic Devices: Read-only memories (ROM, EPROM, EEPROM/FLASH), Programmable logic arrays (PLAs), Programmable array logic (PLAs, Designing with FPGAs, Xlinx 4000 series FPGAs, using a one-hot state assignment	CO1, CO4				

Learning Resources

Text Books

1. J.Bhaskar- VHDL Primer, Pearson Education Asia, 2001.

Reference Books

1. Fundamentals of Digital Logic with VHDL Design, Stephen Brown and Zvonko Vranesic, McGraw-Hill Higher Education.