Mathematics for Machine Learning

Course Code		Year	II	Semester	Ш
Course Category	Honors	Branch	CSE	Course Type	Theory
Credits	4	L-T-P	4-0-0	Prerequisites	-
Continuous Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes

Upon successful completion of the course, the student will be able to

CO1	Understand the basic notions of machine learning and of the related basic mathematical tools.	L2
CO2	Apply machine learning algorithms on synthetic and real data sets using mathematical concepts.	L3

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1: Low)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	3								2	2			2	2

	Syllabus					
Unit No.	Contents	Mapped CO				
I	Linear Algebra: Systems of Linear Equations, Matrices, Solving Systems of Linear Equations, Vector Spaces, Linear Independence, Basis and Rank, Linear Mappings, Affine Spaces	CO1,CO2				
п	Analytic Geometry: Norms, Inner Products, Lengths and Distances, Angles and Orthogonality, Orthonormal Basis, Orthogonal Complement, Inner Product of Functions, Orthogonal Projections, Rotations	CO1,CO2				
ш	Matrix Decompositions: Determinant and Trace, Eigenvalues and Eigenvectors, Cholesky Decomposition, Eigendecomposition and Diagonalization, Singular Value Decomposition, Matrix Approximation, Matrix Phylogeny	CO1,CO2				
IV	Vector Calculus : Differentiation of Univariate Functions, Partial Differentiation and Gradients, Gradients of Vector-Valued Functions, Gradients of Matrices, Useful Identities for Computing Gradients, Backpropagation and Automatic Differentiation, Higher-Order Derivatives, Linearization and Multivariate Taylor Series	CO1,CO2				
V	Probability and Distributions: Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product Rule, and Bayes' Theorem, Summary Statistics and Independence, Gaussian Distribution, Conjugacy and the Exponential Family, Change of Variables/Inverse Transform Continuous Optimization: Optimization Using Gradient Descent, Constrained Optimization and Lagrange Multipliers, Convex Optimization	CO1,CO2				

Learning Resources							
Text Books	 "Mathematics for Machine Learning", Marc Peter Deisenroth, A. Aldo Faisal and Cheng Soon Ong, Cambridge University Press. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition, Trevor Hastie, Robert Tibshirani, Jerome Friedman, Springer 2017. 						
Reference Books	1. Machine Learning: An Applied Mathematics Introduction, Paul Wilmott, Panda Ohana Publishing 2019.						