ADVANCED COMPUTER ARCHITECTURE

Course Code		Year	II	Semester	П
Course Category	Honors	Branch	CSE	Course Type	Theory
Credits	4	L-T-P	4-0-0	Prerequisites	-
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100

	COURSE OUTCOMES					
Upon successful completion of the course, Student will be able to						
CO1	Understand Technological Trends in Computer Architecture	L2				
CO2	Apply organizational enhancements to the processor for improving performance.	L3				
CO3	Apply Reduced instruction set architecture to optimize pipelining and to enhance instruction level parallelism.	L3				
CO4	Analyze parallel processing capabilities of a system.	L4				

Contri	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
correlations (3:Substantial, 2: Moderate, 1:Slight)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO10	PO11	PO12	PSO1	PSO2
	1	2	3	4	5	6	7	8	9					
CO1														
CO2	3								2	2				3
CO3	3								2	2				3
CO4		3							2	2				3

Syllabus					
Unit No.	Contents	Mapped CO			
I	Processor Structure and Function: Processor Organization, Register Organization, The Instruction Cycle, Instruction Pipelining.				
П	Reduced Instruction Set Computers (RISCs): Instruction Execution Characteristics, The Use of a Large Register File, Compiler-Based Register Optimization, Reduced Instruction Set Architecture, RISC pipelining.				
Ш	Instruction-Level Parallelism and Superscalar Processors: Overview, Design Issues, Pentium 4, ARM Cortex-A8.	CO1, CO3			
IV	Parallel Processing: The Use of Multiple Processors, Symmetric Multiprocessors, Cache Coherence and the MESI Protocol, Multithreading and Chip Multiprocessors, Clusters, Nonuniform Memory Access Computers.	CO1, CO4			
V	Multicore Computers: Hardware Performance Issues, Software Performance Issues, Multicore Organization, Intel x86 Multicore Organization.ARM11 MPCore.	CO1, CO4			

Learning Resources

Text Books

1. "Computer Organization and Architecture- Design for performance", William Stallings, Pearson Education, Eighth Edition, 2013.

References

- **1.** "Computer Architecture A Quantitative Approach", John L. Hennessy and David A. Patterson, Morgan Kaufmann/Elsevier, Fifth edition, 2012.
- **2.** "Advanced Computer Architecture", Kai Hwang, Tata McGraw-Hill Education, Second Edition, 2013.

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/106103206
- 2. https://nptel.ac.in/courses/106102229